ESCUELA LATINOAMERICANA. DE REDES

UNIVERSIDAD DE LOS ANDES - NC1
MERIDA-VENEZUELA '
. (2 AL 20 NOVIEMBRE. 1992)

TCP/IP

TRANSMISSION CONTROL PROTOCOL/
' INTERNET PROTOCOL
BEN M. SEGAL
CERN

GINEBRA - SUIZA

TCP / IP

-- Developed for ARPANET: starting in 1969 il

-- Designed to connect HETEROGENEQUS systems
acrose HETEROGENEOUS networks. -

— Networks can be COMPOSITE ("CATENET" or "INTERNET")

-- NETWORK EXAMPLES:
Wide-area Terrestial
Wide-area Satellite / Radio

Local-area (ETHERNET, Token, etc.)

INTERNET COMMUNICATION

Host Bridge Gateways Host

N3

'l

N@R@UN@&

s

b -fV L S SR YT,

Nijmegen§

or "

Amsterdam

Groningen

=]

=6

LTl

-.u.\\\\ \\‘v:

154 |
(s EUNe vrie
=" INRIA

.

O 1
[
=
[/
S
=

7

Z
DI

G777

i /7///=/

hiszAntipolis

International IP Leased Lme. i
(running IP over part or “all- o{ghe‘ indicated bandwidth)

Natjonal connection (not all are represcnted) .
National [P Net. . CERN-CN/CS Map05
February 1980

International IP Net. :

Mulii-International [P Node

(Prepared for CERM intemal wse from available information. Can be obuined from F.G.de Bilio CERN-CN/CS)

RN e LY M

it STIAELN

M

v A

i

P/l ITE

Au(iL;£><l_;) (am... Gia) G Qo) ...

s: TcP [e

L | IP: INTERNET PROTOCOL

/

Arpanet | [X.25 [| LANs | * | pecnet. Satnet | | Radlo

=

. -- Electronic mail/gonferensing/nawa (sendmail).

~~ Remote procedure call (Apslle NCS, Sun REC..

Hhat Are the sorvico- You G.t?

~— Remote login to/fyom systems (telmet/rlogin). .

~= File transfer (f&p or rcp pretesels).

——'Distributed file system (N¥8).

-— Distributed windew system (¥).

-~ Remote command execution (xsh protocol).

' —-— Remote printing (lpr proteael).

~ —— Remote file backup.

-- ete... etea. ..

)

~— Task-task programming interface (BSD sockets) ..

The following command script illustrates how one might use FTP to retrieve RFCs
under 4.3 BSD UNIX:

#! /bin/sh

. .

rfc - 4.3 BSD UNIX (Bourne) shell script to obtain copies of RFCs,
¥ keeping a local cache for subsequent requests.
L ' o

#- use: 'rfc humber [numbér...]

$ ' L

PATH=/bin:/usr/bin:/usr/ucb

PUB=/usr/pub/RFC - -

for i .)

do if test”! -r SPUB/Si -o $i = "-jindex"

" thén echo Retrieving RFC $i from SRITNIé.ARPA >&2
b L i e = T : L | . o
invoke FTP under 4.3 BSD UNIX and feed it ?etrieval'commands as input.
. : : A .
ftp -n SRI-NIC.ARPA >/dev/null 2>§l1 <<!
‘user anonymous gquest
get <rfc>rfc$i.txt SPUB/Si
quit - :
!

. :
Have obtained file; give copy to user if retrieval was successful.
y : .

"if test -r $PUB/Si

‘then cat $PUB/Si

else echo Could not retrieve RFC $i 1>&2

£i | -
done

The script shown above does more than use FTP to retrieve an REC. It leaves a
copy of the RFC in directory /usr/pub/RFC. The advantage of keeping a local copy of an
RFC is that subsequent requests are much faster than the first because they do not use
FTP nor do they pass information across the Intemnet. If the script finds one of the re--
quested RFCs in the cache, it merely presents the user with a copy. Note that the script
does not look in the cache when retrieving the special file -index because the index con-
tains a list of all RFCs that changes as new RFCs appear:-

Conceptually, each address is a pair (netid, hostid), where netid identifies a network, -
and hostid identifies a host on that network. In practice, Internet addresses have threet |
primary forms, as Figure 4.1 shows. Given an Intemnet address, its class can be deter- |
mined from the three high-order bits, with two bits being sufficient to distinguish among
the primary classes. Class A addresses, which are used for the handful of networks that
have more than 2'¢ (i.e., 65,536) hosts, devote 7 bits to netid and 24 bits to hostid. Class
B addresses, which are used for intermediate size networks that have between 28 (i.e.,
256) and 2'¢ hosts, allocate 14 bits to the netid and 16 bits to the hostid. Finally, class C
networks, which have less than 2? hosts, allocate 22 bits to the netid and only 8 bits to the -
hostid. Note that the Internet address has been defined in such a way that it is possible to

extract the hostid or netid portions in constant time. Gateways, which base routing on the
netid, depend on such efficient extraction.

0 1 8 16 24 31
ClassA |0 netid hostid
ClassB 1|0 netid hostid
ClassC | 1] 1 netid hostid

Figure 4.1 The three primary forms of Internet addresses.

The ICMP TYPE field defines the meanmg of the message and the format of the rest
of the packet. The types include:

Type Field ICMP Meesage Type
0 - Echo Reply
3 Destination Unreachable
4 Source Quench
5 - Redirect (change a route)
8 : Echo Request
11 Time Exceeded for a Datagrlm
C12 . .Parameter Problem on a Datagram
A3 . Timestamp Request
14 Timestamp Reply
15 Information Request
- 16 Information Reply -
17 Address Mask Request
. 1‘8_ : Address Mask Reply

The C ODE ﬁeld in a desnnanon unreachable message contams an mteger that further
describes the problem. Possible values are:

- Code Value . - - Meaning
' 0 Network Unreachable
1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation Needed and DF set
5 - Source Route Failed

A gateway sends network or host unreachable messages when it cannot route or
deliver datagrams. Destinations may be unreachable because hardware is temporarily out
of service, because the sender specified a nonexistent destination address, or (in rare cir-
cumstances) because the gateway does not have a route to the destination network.
ICMP includes a short prefix of the datagram that caused the problem so protocol
software at the original source can know exactly which datagram caused the problem.
The meaning of protocol and port unreachabie messages will become clear when we
study how higher level protogols use abstract destination points called *‘ports*”.

Datagram Format

Now that the basic datagram content has been described, we will look at the fields in
more detail. Figure 7.4 shows the arrangement of fields in a datagram:

0 & 8 ' 16 19 24 31

VERS | LEN | TYPE OF SERVICE TOTAL LENGTH
IDENT FLAGS | PRAGMENT OPPSET
TME |. PROTO . |. HEABER CHECKSUM
~ SOURCE IP ADDRESS |
DESTINATION IP ADDAESS
OPTIONS | | PADDING
DATA |

Figure 7.4 Format of an Internet datagram. the bagic unit of transfer on the In-
ternet.

i

ARP Protocol Format

Unlike most protocols, the data in ARP packets does not have a fixed-format header.
Instead, the message is designed to be useful with a variety of network technologies, so
early header fields contain counts that specify lengths of succeeding fields. In fact, ARP
can be used with arbitrary physici! addresses and arbitrary protocol addresses. The ex-
ample in Figure 5.3 below shows the 28-octet ARP message format used on Ethemet
hardware (where physical addresses are 48-bits or 6 octets long), when resolving
DARPA Intemet protocol addresses (4 octets long). Unlike most of the Internet proto-
cols, the variable-length fields in ARP packets do not align on 32-bit boundaries, making
the diagram difficult to' read. For example, the sender’s hardware address, labeled
SENDER HA. occupies 6 contiguous octets, so it spans two lines in the diagram.
Nevertheless. we have chosen this format because it is standard throughout the Internet

literature.
0o 8 6 | 31
‘HARDWARE " | PROTOCOL

HLEN ~ | PLEN OPERATION
SENDER HA (octets 0-3)

SENDER HA(octets 4-5) - SENDER IA (octets 0-1)

SENDERIA (octets 2-3) | TARGET HA (octets 0-1)
TARGET HA (octets 2-5)
TARGET IA (octets 0-4)

" Figure 5.3 The format of ARP/RARP messages used for Internet:to-Ethernet
address resolution. C

Format Of UDP Messages

Each UDP message is called & user datagram and consists of two parts as Figure
11.1 shows: a UDP header and UDP data area.

UDP header | UDP data area

Figure 11.1 The two components of a UDP message. Such messages are called
. user datagrams.

The user datagram header is divided into four 16-bit fields that specify the port from
which the message was sent, the port to which the message is destined, the message
length, and.a UDP checksum. Figure 11.2 gives the details, showing a UDP datagram in

32-bit segments:
0 16 31
SOURCEPORT | DESTINATION PORT
' LENGTH UDP CHECKSUM

Figure 11.2 -The format of fields in the UDP datagram header.

The pseudo header used in the UDP checksum computation consists of 12 octets ar-
.nged as Figure 11.3 shows:

o . 8 16 : 31
. SOURCE IP ADDRESS
| DESTINATION IP ADDRESS
ZERO PROTO UDP LENGTH

*Figure 11.3 The 12 octets of the pseudo header used Zuring UDP checksum
. computation.

. Figure 12.1 shows how the simplest positive acknowledgement protocol transfers

data.

Events At Sender Sito

Send Packet 1

Rocsive ACK 1
Send Packet 2

Receive ACK 2

/

Events At Receiver Site

Receive Packet 1
Send ACK 1

Receive P-ckoi 2
Send ACK 2

Flgure 12.1 A protocol using posmve acknowledgemem wnth retransmission in
which the sender awaits an acknowledgement for each packet
sent. Vertical distance down the figure represents increasing time
and diagonal lines across. the middle represent network packet

transmission.
Events At Sender Site Network Messages Events At Receiver Site
Send Packet 1 Packet lost
Start Timer \
' T~~~ . _al Packet should arrive
_ _ - 4 ACK should be sent
* ACK would normally =TT T ‘
arrive at this time [~
Timer Expires
Retransmit Packet 1
Start Timer
Send ACK 1
Receive ACK 1 / :
Cancel Timer)

Figure 12.2 Timeout and retransmission that occurs when a-packet is lost, The
dotted lines show the time that would be taken by the transmission
of a packet and its acknowledgement, if the packet were not lost.

Events At Sender Site

Send Packet 1
Send Packet 2
Send Packet 3
Receive ACK 1
Mvo 'ACK 2

Reocelve ACK 3

Network Messages

Events At Recesiver Site

Recsive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

Receive Packet 3
Send ACK 3

Figure 12.4 An exampie of three packets transmitted using a sliding window
: protocol. The key éoncept is that the sender can transmit al} pack-
ets in the window without waiting for an acknowledgement.

The Idea Behind Sliding Windows

Reliable Stream Transport Service (TCP)

0 : 16 : 31
SOURCE PORT _ 'DESTINATION PORT
" SEQUENCE NUMBER
" ACKNOWLEDGEMENT NUMBER
OFF. | RES. | CODE - WINDOW
CHECKSUM ' | . URGENTPOINTER
OPTIONS = PADDING -
DATA '

~ Figure 12.7 The format of a TCP segment with a TCP header followed by data.
Segments are used to establish connections as well as to carry data

and acknowlcdgcmcnts

Bit (left to rlght) - Meaning
-URG Urgont pointer fisld is valid
ACK Acknowiedgemeant fieid is valid
PSH This segment requests s push
AST Reset the connection
SYN - Synchronize sequence numbers y
FIN - | Sender has mchod end of its byte stream

TCP software advertises how much data it is willing to accept every time it sends a
segment by specifying its buffer size in the WINDOW field. Window advertisements
provide another example of piggybacking becsuse they accompany all segments includ-
ing those carrying data as well as those carrying only an acknowledgement.

TCP allows the sender to specify that some data is urgent, meaning that it should be
delivered as quickly as possible. The protocol specifies that when urgent data is found,
the receiving TCP shouid notify whatever application program is associated with the con-
nection to go into ‘‘urgent’’ mode. After all urgent data has been received, TCP tells the
_ application program to return to normal operation. Typically, urgent data contains mes-
sages other than normal data. For example, urgent traffic might include keyboard inter-
rupt signals. Such traffic is often referred to as out of band traffic.

. Protocol Dependencies

The chart in Figure 19.4 shows dependencies among the major protocols we have.
discussed. Each enclosed polygon corresponds to one protocol and resides directly above
the polygons representing protocols that it uses. For example, the mail protocol, SMTP,
depends on TCP, which depends on IP. Both ARP and RARP appear in the disgram,
even though not all machines or network technologies use them. In particular, RARP is
seldom used except for diskless machines.

On most systems, application programs are limited. They can access any of the pro-
tocols that form the top ievel in Figure 19.4, but nothing below the TCP/UDP level.
However, some systems provide special purpose mechanisms that allow an application
program to interact with lower protocol layers. For example, having access to I[CMP
echo request and reply service is especially helpful to programmers building Internet
software or network managers responsible for Internet operation and maintenance.

FTP

’ SMTP [riegin | ’ TELNET I Domain | TFTP ’ BOOTP ’
TCP | ubP |
IP + ICMP
ARP (IF ADDRESS RESOLUTION REQUIRED)
RARP (IF NEEDED TO OBTAIN INTERNET ADDRESS)

Figure 19.4 Dependencies among higher level Intemet protocols. A protocol -

uses those protocois that lie directly below it. Application pro-
grams can use all protocols above IP.

/

Figure 12,11 Examples of currently assigned TCP port numbers. To the extent

.. Decimal Keyword- Description
_ 0 Reserved
.. 1-4 - Unassigned . .
5 . RJE Remote Job Entry
7 ECHO Echo '
8 DISCARD Discard
11 USERS - Active Users
13 DAYTIME Daytime
15 NETSTAT Who is up or NETSTAT
17 QUOTE Quote of the Day
- 19 CHARGEN Character Generator
20 FTP-DATA File Transfer Protocol (data) .
21 FTP File Transfer Protoco!
23 TELNET Terminal connection :
25 SMTP Simple Mail Transport Protocol
37 TIME Time
39 RLP , Resource Location Protocol
42 NAMESERVER Host Name Server
43 NICNAME Who is
53 DOMAIN Domain Name Server
67 BOOTPS Bootstrap Protocol Server
68 BOOTPC Bootstrap Protocol Client
69 TFTP Trivial File Transfer
75 any private dial out service
77 . any private RJE service .
79 FINGER Finger
95 SUPDUP SUPDUP Protocol
101 HOSTNAME NIC Host Name Server
102 ISO-TSAP - ISO-TSAP
113 AUTH Authentication Service
- 117 . UUCP-PATH UUCP Path Service- .
123 NTP Network Time Protocoi
133-159 Unassigned-
160-223 Reserved
. 224-241 Unassigned
247-255 Unassigned

possible, protocols like UDP use the same numbers.

An example will make the SMTP exchange clear. Suppose user Smith at host
Alpha.EDU sends a message to users Jones, Green, and Brown at host Beta.GOV. The
SMTP client software on host Alpha. EDU contacts the SMTP server software on host
Beta.GOV and begins the following exchange shown in Figure 19.3.

R: 220 Beta.GOV Simple Mail Transfer Service Ready
S: HELO Alpha.EDU '
R: 250 Beta.GOV

w

: MAIL FROM:<Smith@Alpha.EDU>
R: 250 OK

S: RCPT TO:<Jones@Beta.GOV>
R: 250 COK

S: RCPT TO:<Green@iBeta.GOV>
R: 550 No such user here

S: RCPT TO:<Brown@Beta.GOV>

R: 250 OK

S: DATA

R: 354 Start mail input; end with <CR><LF>.<CR><LE>

S: ...sends body of mail message...

S: ...continues for as many lines as message contains’
St <CR><LF>,<CR><LF>

R: 250 CK

S: QUIT

R: 221 Beta.GOV Service closing transmission channel

Figure 19.3 Exampie of SMTP transfer from Alpha.EDU to Beta.GOV. Lines
that begin with **S:"’ are ransmitted by the sender (Alpha), while
lines that begin ‘‘R:’’ are transmitted by the receiver. In the ex-
ample, machine Beta.GOV does not recognize intended recipient
Green.

—_

Subnet Addresses o

The third technique used to ailow a Single network address to span muitiple physical
networks is called. subnet addressing, or subnet routing. Subnetting is the most widely
used of the three techniques because it is the most general and because it has been stand-

ardized. %

The easiest way to understand subnet addressing is to imagine that a site has a single
class B IP network address assigned to it.-but it has two or more physical networks. Only
local gateways know that there are two physical nets and how to route traffic among
them; the core gateways route all traffic as if there is a single network. Figure 16.3

shows an example.

Network 128.10.1.0
128.10.1.4 | 128.10.1.2
REST OF THE - H, H,
INTERNET |
Network 128.10.2.0
| 128.102.1 | 128.10.2.2
all traffic to H, H,|

128.10.0.0

Figure 16.3 A site with two physical networks using subnet addressing to span
them with a single class B network address. Qateway G accepts
all traffic for net 128.10.0.0 and chooses a physical network based

on the third octet of the address.

Figure 8.1 shows an example Internet that consists of 4 networks and 3 gateways.
In the figure, the routing table gives the routes that gateway G uses. Because G connects

. directly to networks 20.0.0.0 and 30.0.0.0, it can reach any host on those networks direct-

ly (possibly using ARP to find physical addresses). ‘Given a datagram destined for a host
on network 40.0.0.0, G routes it to address 30.0.0.7, the address of gateway H. H will

then deliver the datagram directly. G can reach address 30.0.0.7 because it attaches
directly to network 30.0.0.0. '

20.0.0.5 " 30.0.0.6 40.0.0.7
‘ Network Hl Network |
30.0.0.0 T | 40.0.0.0
30.0.0.7

TOREACHHOSTS ROUTE TO
ONNETWORK THIS ADDRESS

20.0.0.0 DELIVER DIRECT
30.0.0.0 DELIVER DIRECT
10.0.0.0 20.0.0.5
40.0.0.0 30.0.0.7

(b)

Figure 8.1 (a) An example Internet with 4 networks and 3 gateways, and (b)
the routing table for gateway G.

The Final Aigorithm. -« -

Taking into account everything we have said, the IP routing algorithm becomes:

Algorithm: -
Route_IP Datagram (datagram, routing_table)

Extract destination IP address, lo, from datagram
Compute IP address of destination network, in
if Iv matches any direct connected network addreas
send datagram to destination over that network;
(This involves resoiving loto a physical address,
encapsulating datagram, and sending the frame.)
else if io appears as hosti-specific route
route datagram as:speclfled in the table;
else if in appears in routing table |
route datagram as specified in the table;
eise if a default route has been specified
route datagram to'the defdult gateway,
eise declare a routing error;

Figure 8.2 The IP routing algorithm. ‘Given an 1P datagram and a routing
table, this algomhm selects a next machine to which the datagram
should be sent. Routing tables always specify a next machine that
lies on a directly connected network.

Figure 18.2 The conceptual arrahgemcﬁt of domain name servers in a tree that
comesponds to the hierarchy of name authority. Each node
represents a name server that handles names for a single sub-
domain,

ULTRIX DECnet~-Internet Gltoway

COMMAND DETAILS:®

F-!'?:‘

From DECnet (VMS) side:

- COPY loc_file GATE"user@inet pass”::"rem file"
COPY . ¢ Glrl“usereiﬁot passﬁ::
DIR GATE"user@inet pass“;:f' . ,
DELE GATE"inet!usgr_ééss"::"*.h”-

[TY

MATL GATE: :"user@host.domain”

SET HOST GATE

Gate login: inet!

inet: leoegin: ...

e ae any =mm eEn wilh el GER SEN 0y MR

ULTRIX DECnet- Intorn.t Gatowty

From DECnet (VMS) side:

COPY, APFPEND, DELETE,
DIRECTORY, TYPE,
SET HOST, MAIL

" From Internet (ULTRIX) side:

FTP, TELNET, MAIL

MAIL:

TP :.

TELNET :

ULTRIX DECnet- Internet Gatoway

COMMAND DETAILS:
From Internet (ULTRIX) side:
mail uae&%nodc,dn.t@qate

ftp gate

Gate Nama: node::username

. Password: ..o

telnet gate

Gate login: ncode::

noda: login:

e e ame oY mmy el wils ey omm smm i

TCP/IP; Jamm_nmmnmnli

-- Influence of UNIX (4.2BSD):
rsh, rep, r}ogin. NFS..

_- Defined the "SOCKET INTERFACE", also valid for XNS§, 180 ...

-- Intelligent Interface Boards:
- sockets and utilities appear in LIBRARY
- protocols actually run on the INTERFACE

- IMPLEMENTATIONS EXIST FOR: _

. All Unix 4.2/3, including Ultrix.

- Many SYS V Unix, including Cray UNICOS.
- VMS (native and Intelligent-Boards)

- IBM (VM/CMS and MVS)

- IBM PC
- Apollo, HP, most other workstations.

Etc....

ya

/*

.

/*

SOCKET INTERFACE SELECT CALL
Set time limit for select call */

timelim.tv sec:= (lonq)lo,
timelim.tv > usec = 0;

Select on socket s */

readfs = (1<<s);~

Select also on stdin (£d blt 0) »/
readfs |= }1;

Do the wait on combined input... */

i = select(s+l, &xreadfs, 0, 0, timelp);

if (i=m=0) { | - |
fprintf (stderr, "Select timed eut!\n");
exit (0); . |

}

if (1<0) { -
fprintf(std.rr, "Seleét erxrzorxr Sd\n", i):;
exit (1) - |

}
fprintf (stderr, "Select OK...\n");

if (readfs & 1) ... /* Handle TTY input */

if (readfs & !1)... /* Handle net iaput */

/*

SOCKET INTERFACE: SERVER DETAILS

Create the listen socket. ¥/

ls = socket (AF_INET, SOCK_STREAMM, 0);

or.:

/*

/*

/*

* % % %

ls = socket (AF_ISO,” SOCK DGRAM, 0);

Bind the listen address to the socket. */

bind(ls, &myaddr_in, sizeof (myaddr_in));

Initiate the listen on the socket.
The listen backlog is set to 5, which
is the largest currently supported. */

listen(ls, 5);

The accept call will block until a new
connection arrives. Then, it will
return the address of the esonnecting
pear, and a new socket descriptor, s,
for that connection. %/

s = accept (ls, &peeraddr in, &addrlen);

"BSD SOCKET INTERFACE"

Genaric: NOT restricted te TCP/IP !!
Typieal suppert also fer PEEnet, XNS, ISO ...

Found on VM8, VM & MVS, IBM-PC/DOS, Mac ...
“Almbst" makes a network logk like files.

Primitives are:

socket (), bind{), éonnect(), listen(), aécept(}
send (), rec&(), sendto (), recﬁfram()

éelect(), shutdown ()

read (), write(), close ()

/*

QX :

/*

/fr

/*

* % % %

SOCKET INTERFACE: CLIENT DETAILS

----——-———-————————-----FW'EWE'.!-.—

Cxeate the client socket. */

8 = gocket (AF_INET, SOCK STREAM, 0);

s = gocket (AF IS0, Séeﬁ;pGRAu, 0);

Bind the elient address te the socket. #*/
(eptienal - otherwise system will do). */
bind(s, &myaddr in, sixeof (myaddr in));

Try to connect to the remote server at

the address built into srvaddr. */
connaect(s, &srvaddr in, siszeef(srvaddr in));
Now, shutdown conneetion for further sends.
This causes the server to redeive an EOF
condition after it has received all data
have been sent so far, indieating that we

will net be sending any fuither data. */

shutdown (s, 1);

