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Introduction

This presentation gives an elementary overview of the "TCp/IP"
networking protocols, which permit logical unification of networking
over heterogeneous computer systems and multiple dissimilar media.
Much o©of this material may be familiar to Unix users already, but VMS
or VM users may only just be starting to use TCP/IP.

TCP/IP Overview

The TCP/IP or "Internet"™ protocols were developed as part of the US
DoD ARPANET project, starting in 1968, and reached their modern form
in the late 1970s and early 1980s. They were designed according to a
layered model, similar to the OSI/OSI model but with fewer layers, to
connect heterogeneous computer systems across heterogeneous composite
networks. User-transparent routing across multiple networks and media
is performed by the "Internet Protocol"™ (IP) datagram layer; an
open-ended set of network services and applications is then built upon
IP, using either the connectionless "User Datagram Protocol" (UCP) or
the connection-oriented "Transmission Control Protocol" (TCP) as

appropriate.

Apart from "classical" applications like FTP (File Transfer Protocol)
and Telnet (remote login), many newer services like the NF'S
distributed file system and the X remote windowing system have been
auaued to the Internet suite, making it an extremely active and
developing area of networking practice.

The Relation to UNIX

In the early 1980s, UC Berkeley was contracted by DARPA to incorporate
TCP/IP into the BSD release of Unix, and this was first offered in 4.1
and then improved in 4.2 and 4.3BSD. Happily, their design of TCP/IP
was done in a generic way which permitted the addition of other
protocols within the same basic framework, and provided a uniform and
elegyant programming interface to all these protoceols, the so-called
"BSD socket interface". The inclusion of a user-level programming
interface into a networking standard was such a significant step that
this socket interface, despite certain defects, has become a de facto
standard for modern networking, and it is Ffound today in many non-BSD
(and non-Unix) environments. This greatly simplifies the porting of



user-written applications between Unix and the non-Unix world: a C
compiler, a socket application 1library, and the desired pretocol
support are all that is needed. (At CERN we commonly write
applications distributed over Unix, UNICOS, VMS, VM/CMS, MSD0OS, Xenix,

05-9 and Apollo systems).

UC Berkeley also wrote a set of Unix-style TCP/IP applications
commonly known as the "r" commands {("rsh'", "rcp™ and "rlogin"™), to
complement the more basic FTP and Telnet applicaticns. When present
on a system, these are normally preferred by users. They are also

found sometimes on non-Unix systems.

Unifying LANs and WANs

In the old days (i.e. just yesterday) quite different approaches to
networking were taken, depending upon the type and speed of the line
which happened to connect a client and its target host: a slow serial
line would rapidly cor~demn the user to manipulations with Kermit or
some other terminal emulator; a faster synchronous line would probably
restrict him/her to using those proprietary protocols found at his
(and, hopefully, at the other) side of the line; and Ethernet or a
Satellite would again change the rules and possibly prevent any

communication at all.

Even.among applications, and even within UNIX, there was (and is) an
enormous variety of differing protocols, mostly non-standard, to
achieve the same basic aims. Why should mail require the wuse of
"uucp" when it runs over one sort of line, and RSCS over another? Of

course the answer is: it doesn’t.

Certain manufacturers (notably DEC with DECnet) successfully overcame
this sort of difficulty, but at the price of permitting communication
only among systems equipped with their proprietary protccols. Certain
-nations tried to develop open standards (notably the UK with its
"Coloured Books") in advance of the (still-awaited..) IS0 standards,
but these did not find wide international acceptance. Today, the only
approximaticn to a universally supported suite of network protocols,
which addresses the whole spectrum of speeds and media, is the

Internet suite.

LAN/WAN Media Gatewaying

How in practice do the Internet protocols allow us to carry out data
communications over an existing mixture of LANs and WANs? The answer
is via IP gateways, which are implemented commercially in many forms.
Sometimes the gateway function is performed simply within an IP host
computer which happens to have interfaces on more than one IP network;
s~matimes it is done in a dedicated box; and sometimes it is done in

both of these ways at once.

The result is- an "internet": an interconnected set of networks.
Consider a laboratory which is wired up on its principal site with
both Ethernet and one or more Token Ring LAN ‘technologies (as is
CERN} . Suppose that it also has departments or collaborators with
whom the only link is an X.25 WaN, plus some others with whom the only
link is a satellite circuit. Then all of the machines at all of those
locations which choose to participate in the common Internet leogical
network will be able to intercommunicate, and only the link speeds
(an” perhaps satellite delays) will affect the quality of network
service. The LOGICAL network services will be the same, and there
will not be any requirement to install only . one manufacturer’s
proprietary hardware or software.

Application Bridging
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In the present world of multiple networking standards we often reguire
bridges at the protocol and/or application level. This brings us
nicely to ULTRIX, which is a bridger "par excellence". ULTRIX is
endowed not only with the Internet protocol suite with all modern
conveniences (the "r™ commands, NFS, X, and so on), but also has
DikCnet (with a socket interface included) and will one day have OSI.
It also has explicitly designed Application Bridyes between Telnet and

FTP and their DECnet equivalents.

The "VMS ULTRIX Connection" is not really a bridge {although one of
its prerelease names implied this). It is simply an implementation
under VMS of the server side of the NFS protocols, allowing VMS file
systems to be accessed by NFS clients. Other TCP/IP functionality is

also present.

How To Set Up a TCP/IP Network

1. Run Unix (either BSD4.x, Ultrix, Sun, Apollo, HP or other system
WITH BSD NETWORKING). Note that a "pure"™ AT&T System III or V will
NOT have this; however more and more manufacturers (or third party

suppliers) are adding on the missing parts.

2, If not Unix, add on the BSD networking. This is routinely
available for Vax VMS, IBM PC DOS/Xenix, IBM VM/MVS, etc. (For VMS
there is the "VMS ULTRIX Connection"™ from DEC, or a choice of third
party products such as Multinet or WIN/TCP).

3. Set up the basic IP routing and name servers across the physical
media in your network. Ethernet is always available, but gateways
are available for IBM Token Ring, Apollo Domain, high and low speed
serial 1lines, X.25, and via direct channel attachments for some
systems. An interesting cheap option for PC’s is to run over RS232
at 9600bps, via a gateway running "SLIP" (Serial Line IP), in the
case that Ethernet is not available.

What Services Do You Get From All This?

1. Remote login to/from all systems (felnet or rlogin protocols).
2, File transfer (FTP or rcp protocols).,

3. Distributed file system (NFS).

4. Distributed window system (X).

5. Remote procedure call support (Apollo NCS or Sun RPC) .,

6. Task-to-task programming interface (BSD socket library).

7. Remote command execution (rsh protocol).

8. Remote printing (ipr protoceol).

9, Electronic mail/conferencing/news {sendmail).

10.Remote file backup.

etc... etc...
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Introduction to the Internet Protocols Page 2

1. WHAT IS TCP/IP ?

TCP/IP is a set of protocols developed to allow cooperating computers to share resources across a net-
work. It was developed by a community of researchers centered around the ARPAnet. Certainly the ARPAnet is
the best-known TCP/IP network. However as of June, 87, at least 130 different vendors had products that sup-
port TCP/IP, and thousands of networks of all kinds use it.

“i't some basic definitions, The most accurate name for the set of protocols we are describing is the
Internet protocol suite. TCP and IP are two of the protocols in this suite. (They will be described below.)
Because TCP and IP are the best known of the protocols, it has become common to use the term TCP/IP or
IP/TCP to refer to the whole family. It is probably not worth fighting this habit. However this can lead to some
oddities. For example, I find myself talking about NFS as being based on TCP/IP, even though it doesn’t use
TCP at all. (It does use IP. But it uses an alternative protocol, UDP, instead of TCP. All of this alphabet soup
will be unscrambled in the following pages.)

The Intemet is a coliection of networks, including the Arpanet, NSFnet, regional networks such as NYser-
net, local networks at a number of University and research institutions, and a number of military networks. The
term fnternet applies to this entire set of networks. The subset of them that is managed by the Department of
Defense is referred 10 as the DDN (Defense Data Network). This includes some research-oriented networks, such
as the Arpanet, as well as more strictly military ones. (Because much of the funding for Intemet protocol
developments is done via the DDN organization, the terms Internet and DDN can sometimes seem equivalent,)
All of these networks are connected o each other. Users can send messages from any of them to any other,
except where there are security or other policy restrictions on access. Officially speaking, the Intemet protocol
documents are simply standards adopted by the Internet community for its own use. Mare recently, the Depart-
ment of Defense issued a MILSPEC definition of TCP/IP. This was intended to be a more formal definition,
appropriate for use in purchasing specifications. However most of the TCP/IP community continues to use the
Internet standards. The MILSPEC version is intended to be consisten, with it. Whatever it is called, TCP/IP is a
family of protocols. A few provide low-level functions needed for many applications. These include IP, TCP,
and UDP. (These will be described in a bit more detail later.) Others are protocols for doing specific tasks, e.g.
transferring files between computers, sending mail, or finding out who is logged in on another computer. Ini-
tially TCP/IP was used mostly between minicomputers or mainframes. These machines had their own disks, and
generally were self-contained. Thus the most important traditional TCP/IP services are:

File ransfer

The file transfer protocol (FTP) allows a user on any computer to get files from another computer, or to
send files to another computer. Security is handled by requiring the user to specify a user name and pass-
word for the other computer. Provisions are made for handling file transfer between machines with
different character set, end of line conventions, etc, This is not quite the same thing as more recent net-
work file system or netbios protocols, which will be described below. Rather, FTP is 4 utility that you run
any time you want to access a file on another system. You use it to copy the file to your own system.
You then work with the local copy. (See RFC 959 for specifications for FIP.)

Remote login
The network terminal protocol (TELNET) allows a user to log in on any other computer on the network.

sion, anything you type is sent to the other computer. Note that you are really still talking 1o your own
computer. But the telnet program effectively makes your computer irvisible while it is running. Every
character you type is sent directly to the other system. Generally, the connection 1o the remote computer
behaves much like a dialup connection. That is, the remote system will ask you to log in and give a pass-

computer implementations of telnet generally include a terminal emulator for some commeon type of termi-
nal. (See RFC's 854 and 855 for specifications for telnet. By the way, the telnet protocol should not be
confused with Telenet, a vendor of comimercial network services,)

November 26, 1987



Introductien to the Internet Protocols Page 3

the addressee’s computer, in order to send the mail, If this is a-microcomputer, it may be turned off, or it
may be running an application other than the mail system. For this reason, mail is normally handled by a
larger system, where it is practical to have a mail server rmunning all the time. Microcomputer mail
s3. s.re then becomes a user interface that retrieves mail from the mail server. (See RFC 821 and §22
for specifications for computer mail. See RFC 937 for a protocol designed for microcomputers to use in
reading mail from a mail server.)

These services should be present in any implementation of TCP/IP, except that micro-oriented implemen-
tations may not support computer mail. These traditional applications still play a very important role in TCP/IP-
based networks. However more recently, the way in which networks are used has been changing. The older
model of a number of large, self-sufficient computers is beginning to change. Now many installations have
several kinds of computers, including microcomputers, workstations, minicomputers, and mainframes. These
computers are likely to be configured to perform specialized tasks. Although people are still likely to work with
one specific computer, that computer will call or other systems on the net for specialized services. This has led
to the server/client model of network services. A server is a system that provides a specific service for the rest
of the network. A client is another system that uses that service. {Note that the server and client need not be on
different computers. They could be different programs running on the same computer) Here are the kinds of
servers typically present in a modern computer setup. Note that these computer services can all be provided
within the framewaork of TCP/IP.

Network file systems

This allows a system to access files on another computer in a somewhat more closely integrated fashion
than FTP. A network file system provides the illusion that disks or other devices from one system are
directly connected to other systems. There is no need 10 use a special network utility to access a file on
another system. Your computer simply thinks it has some extra disk drives. These extra virtual drives refer
to the other system’s disks. This capability is useful for several different purposes. It lets you put large
disks on a few computers, but still give others access to the disk space. Aside from the obvious economic
benefits, this allows people working on several computers to share common files. It makes system mainte-
nance and backup easier, because you don’t have to worry about updating and backing up copies on lots
of different machines. A number of vendors now offer high-performance diskless computers. These com-
puters have no disk drives at all. They are entirely dependent upon disks attached to common file servers.
(See RFC’s 1001 and 1002 for a description of PC-oriented NetBIOS over TCP. In the workstation and
minicomputer area, Sun's Network File System is more likely to be used. Protocol specifications for it are
available from Sun Microsystems.)

Remote printing
This allows you to access printers on other computers as if they were directly attached to yours. (The most
commonly used protocol is the remote lineprinter protocol from Berkeley Unix. Unfortunately, there is no
protocol document for this. However the C code is easily obtained from Berkeley, so implementations are
common.)

Remote execution

: This allows you to request that a particular program be run on a different computer, This is useful when
you can do most of your work on a small computer, but a few tasks require the resources of a larger sys-
tem. There are a number of different kinds of remote execution, Some operate on a command by com-
mand basis. That is, you request that a specific command or set of commands should run on some specific
computer. (More sophisticated versions will choose a system that happens to be free.) However there are
also remote procedure call systems that allow a program to call a subroutine that will run on another com-
puter. (There are many protocols of this sort. Berkeley Unix contains two servers to execute commands
remotely: rsh and rexec. The man pages describe the protocols that they use. The user-contributed
software with Berkeley 4.3 contains a distributed shell that will distribute tasks among a set of systems,
depending upon load. Remote procedure call mechanisms have been a topic for research for a number of
years, so many organizations have implementations of such facilities. The most widespread commercially-
supported remote procedure call protocols seem to be Xerox’s Courier and Sun’s RPC. Protocol docu-
ments are available from Xerox and Sun. There is a public implement **2n of Courier over TCP as part of
the user-contributed software with Berkeley 4.3. An implementation of RPC was posted to Usenet by
Sun, and also appears as part of the user-contributed software with Berkeley 4.3.)

Name servers ;

In large installations, there are a number of different collections of names that have to be managed. This

November 26, 1987
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includes users and their passwords, names and network addresses for computers, and accounts. It becomes
very tedious 1o keep this data up to date on all of the computers. Thus the databases are kept on a small
number of systems. Other systems access the data aver the network. (RFC 822 and 823 describe the name
server protocol used to keep track of host names and Internet addresses on the Internet. This is now a
requ.ed part of any TCP/IP implementation. IEN 116 describes an older aame server protocol ihat is used
by a few terminal servers and other products to look up host names. Sun's Yellow Pages system is
designed as a general mechanism to handle user names, file sharing groups, and other databases commonly
used by Unix systems. It is widely available commercially. Its protocol definition is available from Sun.)

Terminal servers .

Many installations no longer connect terminals directly to computers. Instead they connect them to termi-
nal servers. A terminal server is simply a small computer that only knows how to run telnet (or some
other protocol to do remote login). If your terminal -is connected to one of these, you simply type the
name of a computer, and you are connected to it. Generally it is possible to have active connections to
more than one computer at the same time. The terminal server will have provisions to switch between
connections rapidly, and to notify you “vhen output is waiting for another connection. (Terminal servers
use the telnet protocol, already mentioned. However any real terminal server will also have to support
name service and a number of other protocols.)

Network-oriented window systems

Until recently, high- performance graphics programs had lo execute on a computer that had a bit-mapped
graphics screen directly auached to it. Network window systems allow a program to use a display on a
different computer. Full-scale network window systems provide an interface that lets you distribute jobs to
the systems that are best suited to handle them, but still give you a single graphically-based user interface.
(The most widely-implemented window system is X. A protocol description is available from MIT's Pro-
ject Athena. A reference implementation is publicaily availabl~ from MIT. A number of vendors are also
supporting NeWS, a window system defined by Sun. Both of these systems are designed to use TCP/IP.)

Note that some of the protocols described above were designed by Berkeley, Sun, or other organizations.
Thus they are not officially part of the Intemet protocol suite. However they are implemented using TCP/IP,
just as normal TCP/IP application protocols are. Since the protocol definitions are not considered proprietary,
and since commercially-support implementations are widely available, it is reasonabie to think of these protocols
as being effectively part of the Intemet svite. Note that the list above is simply a sample of the sort of services
available through TCP/IP. However it does contin the majority of the major applications. The other
commonly-used protocols tend to be specialized facilities for getting information of various kinds, such as who
is logged in, the time of day, etc. However if you need a facility that is not listed hLere, we encourage you 10
look through the current edition of Internet Protocols (currenily RFC 1011), which lists all of the available pro-
tocols, and also to look at some of the major TCP/IP implementations to see what various vendors have
added. .

2. GENERAL DESCRIPTION OF THE TCP/IP PROTOCOLS

TCP/IP is a layered set of protocols. In order to understand what this means, it is useful to look at an
example. A typical situation is sending mail. First, there is a protocol for mail. This defines a set of commands
which one machine sends to another, e.g. commands to specify who the sender of the message is, who it is ~
being sent to, and then the text of the message. However this protocol assumes that there is a way to communi-
cate reliably between the two computers. Mail, like other application protocols, simply defines a set of com-
mands and messages to be sent. It is designed to be used together with TCP and IP. TCP is responsible for mak-
ing sure that the commands get through 1o the other end. It keeps track of what is sent, and retransmitts anything
that did not get through. If any message is too large for one datagram, ¢.g. the text of the mail, TCP will split it
up into several datagrams, and make sure that they all arrive correctly. Since these functions are needed for
many applications, they are put together into a separate protocol, rather than being part of the specifications for
sending mail. You can think of TCP as forming a library of routines that applications can use when they need
reliable network communications with another computer. Similarly, TCP calls on the services of IP. Although
the services that TCP supplies are needed by many applications, there are still some kinds of applications that
don’t need them. However there are some services that every application needs. So these services are put
together into IP. As with TCP, you can think of IP as a library of routines that TCP calls on, but which is also
available to applications that don’t use TCP. This strategy of building several levels of protocol is called layer-
ing. We think of the applications programs such as mail, TCP, and IP, as being separate layers, each of which
calls on the services of the layer below it. Generally, TCP/IP applications use 4 layers:
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- an application protocol such as mail

- a protocol such as TCP that provides services need by many applications

- IF -vhich provides the basic service of getting datagrams to their destination

- the protocols needed to manage a specific physical medium, such as Ethernet or a point to point line.

TCP/IP is based on the catenet model. (This is described in more detail in IEN 48.) This model assumes
that there are a large number of independent networks connected together by gateways. The user should be able
to access computers or other resources on any of these networks. Datagrams will often pass through a dozen
different networks before getting to their final destination. The routing needed to accomplish this should be com-
pletely invisible to the user. As far as the user is concemed, all he needs to know in order to access another
system is an [nternet address. This is an address that looks like 128.6.4.194. It is actually a 32-bit number.
However it is normally written as 4 decimal numbers, each representing 8 bits of the address. (The term octet is
used by Internet documentation for such 8-bit chunks. The term byte is not used, because TCP/IP is supported
by some computers that have byte sizes other than 8 bits.) Generally the structure of the address gives you some
information about how to get to the system. For example, 128.6 is a network number assigned by a central
authority to Rutgers University. Rutgers uses the next octet to indicate which of the campus Ethemets is
involved. 128.6.4 happens to be an Ethemet used by the Computer Science Department. The last octet allows
for up to 254 systems on each Ethernet. (It is 254 because 0 and 255 are not allowed, for reasons that will be
discussed later,) Note that 128.6.4.194 and 128.6.5.194 would be different systems. The stucture of an Internet
address 15 described in a bit more detail later. '

Of course we normally refer to systems by name, rather than by Intemet address. When we specify a
name, the network software looks it up in a database, and comes up with the corresponding Internet address.
Most of the network software deals strictly in terms of the address. (RFC 882 describes the name server technol-
ogy used to handle this lookup.)

TCP/IP is built on connectioniess technology. Information is transfered as a sequence of i. "datagrams”.
A datagram is a collection of data that is sent as a single message. Each of these datagrams is sent through the
network individually. There are provisions to open connections (i.e. to start a conversation that will continue for
some time). However at some level, information from those connections is broken up into datagrams, and those
datagrams are treated by the network as completely separate. For example, suppose you want to transfer a
15000 octet file. Most networks can’t handle a 15000 octet datagram. So the protocols will break this up into
something like 30 500-octet datagrams. Each of these datagrams will be sent 1o the other end. At that point,
they will be put back together into the 15000-octet file. However while those datagrams are in transit, the net-
work doesn’t know that there is any connection between them. It is perfectly possible that datagram 14 will
actually arrive before datagram 13. It is also possible that somewhere in the network, an emor will occur, and
some datagram won't get through at all. In that case, that datagram has to be sent again.

Note by the way that the terms datagram and packer often seem to be nearly interchangable. Technically,
datagram is the right word to use when describing TCP/IP. A datagram is a unit of data, which is what the pro-
tocols deal with. A packet is a physical thing, appearing on an Ethemet or some wire. In most cases a packet
simply contains a datagram, so there is very lite difference. However they can differ. When TCP/IP is used on
top of X.25, the X.25 interface breaks the datagrams up into 128-byte packets. This is invisible to IP, because
the packets are put back together into a single datagram at the other end before being processed by TCP/IP. So
in this case, one IP datagram would be carried by several packets. However with most media, there are
efficiency advantages to sending one datagram per packet, and so the distinction tends to vanish.

2.1. The TCP Level

Two separate protocols are involved in handling TCP/IP datagrams. TCP, the Transmission Control Proto-
col is responsible for breaking up the message into datagrams, reassembling them at the other end, resending
anything that gets lost, and putting things back in the right order. IP, the Internet Protocol is responsible for
routing individual datagrams. It may seem like TCP is doing all the work. And in small networks that is true.
However in the Internet, simply getting a datagram to its destination can be a complex job. A connection may
require the datagram to go through several networks at Rutgers, a serial line to the John von Neuman Supercom-
puter Center, a couple of Ethemets there, a series of 56Kbaud phone lines to another NSFnet site, and more Eth-
emets on another campus. Keeping track of the routes to all of the destirations and handling incompatibilities
among different transport media turms out to be a complex job. Note that the interface between TCP and IP is
fairly simple. TCP simply hands IP a datagram with a destination. IP doesn't know how this datagram relates to
any datagram before it or after it.
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It may have occurred 1o you that something is missing here. We have talked about Internet addresses, but
not about how you keep track of multiple connections to a given system. Clearly it isn’t enough to get a
datagram to the right destination. TCP has to know which connection this datagram is part of. This task is
referred to as demultiplexing. In fact, there are several levels of demultiplexing going on in TCP/IP. The infor-
mation ne2ded to do this demultiplexing is contained in a series of headers. A header is simply a faw extra
octets tacked onto the beginning of a datagram by some protocol in order to keep track of it. It’s a lot like put-
ting a letter into an envelope and putting an address on the outside of the envelope. Except with modem net-
works it happens several times. It's like you put the letter into a little envelope, your secretary puts that into a
somewhat bigger envelope, the campus mail center puts that envelope into a still bigger one, etc, Here is an
overview of the headers that get stuck on a message that passes through a typical TCP/IP network: Ip We start
with a single data stream, say a file you are trying to send to some other computer:

TCP breaks it up into manageable chunks. (In order to do this, TCP has to know how large a datagram
your network can handle.  Actually, the TCP's at each end say how big a datagram they can handle, and then
they pick the smallest size.)

TCP puts a header at the front of cach datagram. This header actually coniains at Jeast 20 octets, but the
most important cnes are a source and destination port number and a sequence nun.ber. The port numbers are
used to keep track of different conversations. Suppose 3 different people are transferring files. Your TCP might
allocate port numbers 1000, 1001, and 1002 to these transfers. When you are sending a datagram, this becomes
the source port number, since you are the source of the datagram. Of course the TCP at the other end has
assigned a port number of its own for the conversation. Your TCP has to know the port number used by the
other end as well. (It finds out when the connection starts, as we will explain below.} It puts this in the destina-
tion port field. Of course if the other end sends a datagram back to you, the source and destination port numbers
will be reversed, since then it will be the source and you will be the destination. Each datagram has a sequence
number. This is used so that the other end can make sure that it gets the datagrams in the right order, and that it
hasn’t missed any. (See the TCP specification for details.) TCP doesn’t number the datagrams, but the octets.
So if there are 500 octets of data in each datagram, the first datagram might be numbered 0, the second 500, the
next 1000, the next 1500, etc. Finally, I will mention the Checksum. This is a number that is computed by
adding up all the octets in the datagram (more or less - see the TCP spec). The result is put in the header, TCP
at the other end computes the checksum again. If they disagree, then something bad happened to the datagram in
ransmission, and it is thrown away.

So here’s what the datagram looks like now,

Source Port | Destination Port
Sequence Number
Acknowledgment Number

Data UAPRSF
Offset Reserved RCSSYI Window
GKHTNN
Checksum Urgent Pointer

your data ... next 500 octets

If we abbreviate the TCP header as "T", the whole file now looks like this:

T.. T.. T.. T.. Tu. T.. T..

You will note that there are items in the header that I have not described above. They are generally
involved with managing the connection. In order to make sure the datagram has arrived at its destination, the
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recipient has to send back an acknowledgement. This is a datagram whose Acknowledgement number field is
filled in. For example, sending a packet with an acknowledgement of 1500 indicates that you have received all -
the data up to octet number 1500. If the sender doesn’t get an acknowledgement within a reasonable amount of
time, it sends the data again. The window is used to control how much data can be in transit at any one time. It
is not practical to wait for each datagram to be acknowledged before sending the next one. That would slow
things down too much. On the other hand, you can’t just keep sending, or a fast computer might overrun the
capacity of a slow one to absorb data. Thus each end indicates how much new data it is currently prepared to
abeqrb by putting the number of octets in its Window field. As the computer receives data, the amount of space
left in its window decreases. When it goes to zero, the sender has to stop. As the receiver processes the data, it
increases its window, indicating that it is ready to accept more data. Often the same datagram can be used to
acknowledge receipt of a set of data and to give permission for additional new data (by an updated window).
The Urgent field allows one end to tell the other to skip ahead in its processing to a particular octet. This is
often useful for handling asynchronous events, for example when you type a control charucter or other command
that interrupts output. The other fields are beyond the scope of this document.

2.2. The IP Level

TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet address of the computer
at the other end. Note that this is all IP is concerned aboul. It doesn’t care about what is in the datagram, or
even in the TCP header. IP's job is simply to find a route for the datagram and get it to the other end. In order
to allow gateways or other intermediate systems to forward the datagram, it adds its own header. The main
things in this hcader are the source and destination Internet address (32-bit addresses, like 128.6.4.194), the pro-
tocol number, and another checksum. The source Internet address is simply the address of your machine. (This
is necessary so the other end knows where the datagram came from.) The destination Internet address is the
address of the other machine. (This is necessary so any gateways in the middle know where you want the
datagram to go.) The protocol number tells IP at the other end to send the datagram to TCP. Although most IP
waffic uses TCP, there are other protocols that can use IP, so you have to tell IP which protocol to send the
datagram to. Finally, the checksum allows IP at the other end to verify that the header wasn't damaged in tran-
sit. Note that TCP and IP have separate checksums. IP needs to be able to verify that the header didn’t get
damaged in transit, or it could send a message to the wrong place. For reasons not worth discussing here, it is
both more efficient and safer to have TCP compute a separate checksum for the TCP header and data. Once IP
has tacked on its header, here's what the message looks like:

Version [ THL LType of Service Total Length
Identification ’ Flags I Fragment Offset
Time to Live | Protocot Header Checksum
Source Address

Destination Address

TCP header, then your da ......

If we represent the IP header by an /, your file now looks -like this:

IT... IT... IT.. IT.. IT.. IT.. IT.. -

Again, the header contains some additional fields that have not been discussed. Most of them are beyond
the scope of this document. The flags and fragment offset are used to keep track of the pieces when a datagram
has to be split up. This can happen when datagrams are forwarded through a network for which they are too
big. (This will be discussed a bit more below.) The time to live is a number that is decremented whenever the
datagram passes through a system. When it goes to zero, the datagram is discarded. This is done in case a loop
develops in the system somehow. Of course this should be impossible, but well-designed networks are built to
cope with impossible conditions.

At this point, it's possible that no more headers are needed. If your computer happens to have a direct
phone line connecting it to the destination computer, or to a gateway, it may simply send the datagrams out on
the line (though likely a synchronous protocol such as HDLC would be used, and it would add at least a few
octets at the beginning and end). .
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2.3. The ETHERNET Level

However most of our networks these days use Ethemet. So now we have to describe Ethemet’s headers.
Unfortunately, Ethemnet has its own addresses. The people who designed Ethernet wanted to make sure that no
two machines would end up with the same Ethernet address. Furthermore, they didn't want the user to have to
worry about assigning addresses. So each Ethernet controller comes with an address builtin from the. factory. In
order to make sure that they would never have 10 reuse addresses, the Ethernet designers allocated 48 bits for
the Ethernet address. People who make Ethernet equipment have to register with a central authority, to make
sure that the numbers they assign don’t overlap any other manufacturer. Ethemet is a broadcast medium. That
is, it is in effect like an old party line telephone. When you send a packet out on the Ethemet, every machine on
the network sees the packet. So something is needed to make sure that the right machine gets it. As you might
guess, this involves the Ethemet header. Every Ethemet packet has a 14-octet header that includes the source
and destination Ethemet address, and a type code. Each machine is supposed to pay attention only to packets
with its own Ethemer address in the destination field. (It's perfectly possible to cheat, which is one reason that
Ethernet communications are not terribly secure.) Note that there is no connection between the Ethernet address
and the Internet address. Each machine has to have a table of what Ethernet address corresponds to what Inter-
net address. (We will describe how this table is constructed a bit later.) In addition to the addresses, the header
contains a type code. The type code is to allow for several different protocol families to be used on the same
network. So you can use TCP/IP, DECnet, Xerox NS, etc. at the same time. Each of them will put a different
value in the type field, Finally, there is a checksum. The Ethemet controller computes a checksum of the entire
packet. When the other end receives the packet, it recomputes the checksum, and throws the packet away if the
answer disagrees with the original. The checksum is put on the end of the packet, not in the header. The final
result is that your message Icoks like this:

Ethemet destination address (first 32 bits)
Ethemet dest (last 16 bits) | Ethemet source (first 16 bits)
Ethemet source address (last 32 bits)
Type code
IP header, then TCP header, then your data ..,

end of your data
Ethernet Checksum

If we represent the Ethernet header with E and the Ethemet checksum with C your file now looks like
this: .

EIT..C EIT..C EIT..C EIT..C EIT..C

When these packets are received by the other end, of course all the headers are removed. The Ethemet
interface removes the Ethernet header and the checksum. It looks at the type code. Since the type code is the
one assigned to IP, the Ethemnet device driver passes the datagram up to IP. IP removes the IP header. It looks
at the IP protocol field. Since the protocol type is TCP, it passes the datagram up to TCP. TCP now looks at
the sequence number. It uses the sequence numbers and other information to combine all the datagrams into the
original file.

The ends our initial summary of TCP/IP. There are still some crucial concepts we haven’t gotten to, so
we'll now go back and add details in several areas. (For detailed descriptions of the items discussed here see,
RFC 793 for TCP, REC 791 for IP, and RFC’s 894 and 826 for sending IP over Ethemnet.)

2.3.1. Well-known sockets and the Applications layer

So far, we have described how a stream of data is broken up into datagrams, sent to another compulter,
and put back together, However something more is needed in order to accomplish anything useful. There has to
be a way for you to open a connection to a specified computer, log into it, tell it what file you want, and control
the transmission of the file. (If you have a different application in mind, e.g. computer mail, some analogous
protocol is needed.) This is done by application protocols. The application protocois run on fop of TCP/IP. That
is, when they want to send a message, they give the message to TCP. TCP makes sure it gets delivered to the
other end. Because TCP and IP take care of all the networking details, the applications protocols can treat a
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network connection as if it were a simple byte stream, like a terminal or phone line,

Before going into more details about applications programs, we have to describe how you find an applica-
tion. Suppose you want to send a file 10 a computer whose Intemet address is 128.6.4.7. To start the process,
you nee.. more than just the Internet address. You have to connect to the FTP server at the other end. In gen-
eral, network programs are specialized for a specific set of tasks. Most systems have separate programs to handle
file transfers, remote terminal logins, mail, etc. When you connect to 128.6.4.7, you have to specify that yon
want 0 talk to the FTP server. This is done by having well-known sockets for each server. Recall that TCP
uses port numbers to keep track of individual conversations, User programs normally use more or less random
port numbers. However specific port numbers are assigned to the programs that sit waiting for requests. For
example, if you want to send a file, you will start a program called "fip". It will open a connection using some
random number, say 1234, for the port number on its end. However it will specify port number 21 for the other
end. This is the official port number for the FIP server, Note that there are two different programs involved.
You run fip on your side, This is a program designed to accept commands from your terminal and pass them on
to the other end. The program that you talk to on the other machine is the FTP server, It is designed to accept
commands from the network connection, rather than an interactive terminal. There is no need for your program
to use a well-known socket number for itself. Nobody is trying to find it. However the servers have to have
well-known numbers, so that people can open connections (o them and start sending them commands. The
official port numbers for each program are given in Assigned Numbers.

Note that a connection is actually described by a set of 4 numbers: the Intemet address at each end, and
the TCP port number at each end. Every datagram has all four of those numbers in it. (The Internet addresses
are in the IP header, and the TCP port numbers arc in the TCP header.) In order to keep things straight, no two
connections can have the same set of numbers. However it is enough for any onc number to be different. For
example, it is perfectly possible for two different users on a machine to be sending files to the same other
machine. This could result in connections with the following parameters:

Intemet addresses TCP ports
connection 1 128.6.4.194, 128.64.7 1234, 21
connection 2 128.6.4.194, 128.64.7 1235, 21

Since the same machines are involved, the Internet addresses are the same. Since they are both doing file
transfers, one end of the connection involves the well-known port number for FTP, The only thing that differs
is the port number for the program that the users are runring. That's enough of a difference. Generally, at least
one end of the connection asks the network software 10 assign it a port number that is guaranteed to be unique.
Normally, it's the user's end, since the server has to use a well-known number. Now that we know how 1o open
connections, let’s get back to the applications programs. As mentioned earlier, once TCP has opened a connec-
tion, we have something that might as well be a simple wire. All the hard pasts are handled by TCP and IP.
However we still nced some agreement as 10 what we send over this connection. In effect this is simply an
agreement on what set of commands the application will understand, and the format in which they are to be
sent. Generally, what is sent is a combination of commands and data. They use context to differendate. For
example, the mail protocol works like this: Your mail program opens a connection to the mail server at the
other end. Your program gives it your machine’s name, the sender of the message, and the recipients you want
it sent to. It then sends a command saying that it is starting the message. At that point, the other end stops treat-
g what it sees as commands, and starts accepting the message. Your end then starts sending the text of the
message. At the end of the message, a special mark is sent (a dot in the first column). After that, both ends
understand that your program is again sending commands. This is the simplest way to do things, and the one
that most applications use.

File transfer is somewhat more complex. The file transfer protocol involves two different connections. It
starts out just like mail. The user’s program sends commands like :

- log me in as this user
- here is my password
- send me the file with this name

However once the command to send data is sent, a second connection is opened for the data itself, It
would certainly be possible to send the data on the same connection, as mail does. However file transfers often
take a long time. The designers of the file transfer protocol wanted to allow the user to continue issuing com-
mands while the transfer is going on. For example, the user might make an inquiry, or he might abort the
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transfer. Thus the designers felt it was best to use a separate connectien for the data and leave we original com-
mand connection for commands. (It is also possible to open command connections to two different computers,
and tell them to send a file from one to the other. In that case, the data couldn’t go over the command connec-
tion.)

Rer.ote ierminal connections use another mechanism still. For remote logins, there is just one connection.
It normally sends data. When it is necessary to send a command (e.g. to set the terminal type or to change some
mode), a special character is used to indicate that the next character is a command. If the user happens to type
that special character as data, two of them are sent.

We are not going to describe the application protocols in detail in this document. It's better to read the
RFC's yourself. However there are a couple of common conventions used by applications that will be described
here. First, the common network representation: TCP/IP is intended to be usable on any computer. Unfor-
tunatety, not all computers agree on how data is represented. There are differences in character codes (ASCH vs.
EBCDIC), in end of line conventions (carriage return, line feed, or a representation using counts), and in
whether terminals expect characters to be sent individually or a line at a time. In order to allow computers of
different kinds to communicate, each applications protocol defines a standard representation. Note that TCP
and IP do not care about the representation. TCP simply sends octets. However the programs at both ends have
to agree on how the octets are to be interpreted. The RFC for each application specifies the standard representa-
tion for that application. Normally it is net ASCII.This characiers, with end of line denoted by a carriage return
followed by a line feed. For remote login, there is also a definition of a standard terminal which tums out to be
a half-duplex terminal with echoing happening on the Jocal machine. Most applications also make provisions for
the two computers to agree on other representations that they may find more convenient. For example, PDP-10's
have 36-bit words. There is a way that two PDP-10's can agree to send a 36-bit bizary file. Similarly, two sys-
tems that prefer full-duplex terminal conversations can agree on that. However each application has a standard
representation, which every machine must support.

2.4. An example application: SMTP

In order to give a bit better idea what is involved in the application protocols, I'm going to show an
example of SMTP, which is the mail protocol. (SMTP is simple mail transfer protocol.) We assume that a com-
puter called TOPAZ RUTGERS.EDU wants (o send the following message.

Date: Sat, 27 Jun 87 13:26:31 EDT
From: hedrick@topaz.rutgers.edu
To: levy@red.rutgers.edu

Subject: meeting

Let's get together Monday at Ipm.

First, note that the format of the message itself is described by an Internet standard (RFC 822). The stan-
dard specifies the fact that the message must be transmitted as net ASCII (i.e. it must be ASCII, with carriage
return/linefeed to delimit lines). It also describes the general structure, as a group of header lines, then a blank
line, and then the body of the message. Finally, it describes the syntax of the header lines in detail Generally
they consist of a keyword and then a value.

Note that the addressee is indicated as LEVY@RED.RUTGERS.EDU. Initially, addresses were simply
person at machine. However recent standards have made things more flexible. There are now provisions for
systems to handle other systems’ mail. This can allow antomatic forwarding on behalf of computers not con-
nected to the Intemet. It can be used to direct mail for a number of systems to one central mail server. Indeed
there is no requirement that an actual computer by the name of RED.RUTGERS.EDU even exist. The name
servers could be set up so that you mail to department names, and each department’s mail is routed automati-
cally to an appropriate computer. It is also possible that the pan before the @ is something other than a user
name. It is possible for programs to be set up to process mail. There are also provisions to handle mailing lists,
and generic names such as postmaster or operator

The way the message is o be sent to another system is described by RFC's 821 and 974. The program
that is going to be doing the sending asks the name server several queries to determine where to route the mes-
sage. The first query is lo find out which machines handle mail for the name RED.RUTGERS.EDU. In this case,
the server replies that RED.RUTGERS.EDU handles its own mail. The program then asks for the address of
RED.RUTGERS.EDU, which is 128.6.4.2. Then the mail program opens a TCP connection to port 25 on
128.6.4.2. Port 25 is the well-known socket used for receiving mail. Once this connection is established, the
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mail program starts sending commands. Here is a typical conversation, Each line is labelled as to whether it is
from TOPAZ or RED. Note that TOPAZ initiated the connection:

RED 220 RED RUTGERS.EDU SMTP Service at 29 Jun 87 05:17:18 EDT
TOPAZ  HELQ topaz.rutgers.edu

RED 250 RED RUTGERS.EDU - Hello, TOPAZRUTGERS EDU

TOPAZ  MAIL From:<hedrich@iopaz.rutgers.edi>

RED 250 MAIL accepted

TOPAZ  RCPT To:<levy@red.ruigers.edu>

RED 250 Recipient accepted

TOPAZ DATA

RED 354 Start mail input; end with <CRLF><CRLF>

TOPAZ  Date: Sat, 27 Jun 87 13:206:31 EDT
TOPAZ  From: hedrick@topaz.rutgers.edu
TOPAZ  To: levy@red.rutgers.edu

TOPAZ  Subject: meeting

TOPAZ

TOPAZ  Let's get together Monday at 1pm.

TOPAZ .

RED 250 OK

TOPAZ  QUIT

RED 221 RED RUTGERS.EDU Service closing transmission channel

First, note that commands all use normal text. This is typical of the Internet standards. Many of the proto-
cols use standard ASCII commands, This makes it easy to watch what is going on and to diagnose problems.
For example, the mail program keeps a log of each conversation. If something goes wrong, the log file can sim-
ply be mailed to the postmaster. Since it is normal text, he can see what was going on. It also allows a human
to interact directly with the mail server, for testing. (Some newer protocols are complex enough that this is not
practical. The commands would have to have a syntax that would require a significant parser. Thus there is a
tendency for newer protocols to use binary formats. Generally they are structured like C or Pascal record struc-
tures,) Second, note that the responses all begin with numbers. This is also typical of Intemet protocols. The
allowable responses are defined in the protocol. The numbers allow the user program to respond unambiguously.
The rest of the response is text, which is normally for use by any human who may be wartching or locking at a
log. It has no effect on the operation of the programs. (However there is one point at which the protocol uses
part of the text of the response.) The commands themselves simply allow the mail program on one end to tell
the mail server the information it needs to know in order to deliver the message. In this case, the mail server
could get the information by looking at the message itself. But for more complex cases, that would not be safe.
Every session must begin with a HELO, which gives the name of the system that initiated the connection, Then
the sender and recipients are specified. (There can be more than one RCPT command, if there are several reci-
pients.) Finally the data itself is sent. Note that the text of the message is terminated by a line containing just a
period. (If such a line appears in the message, the period is doubled.) After the message is accepted, the sender
can send another message, or terminate the session as in the example above.

Generally, there is a pattem to the response numbers. The protocol defines the specific set of responses
that can be sent as answers to any given command. However programs that don't want to analyze them in detail
can just look at the first digit. In general, responses that begin with a 2 indicate success. Those that begin with
3 indicate that some further action is needed, as shown above. 4 and § indicate errors, 4 is a temporary error,
such as a disk filling. The message should be saved, and tried again later, 5 is a permanent error, such as a
non-existent recipient. The message should be returmed to the sender with an error message.

(For more details about the protocols mentioned in this section, see RFC's 821/822 for mail, RFC 959 for
file transfer, and RFC'"s 854/855 for remote logins. For the well-known port numbers, see the current edition of
Assigned Numbers, and possibly RFC 814.)

3. PROTOCOLS OTHER THAN TCP: UDP AND ICMP

So far, we have described only connections that use TCP. Recall that TCP is responsible for breaking up
messages into datagrams, and reassembling them properly. However in many applications, we have messages
that will always fit in a single datagram. An example is name lookup. When a user attempts to make a
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connection to another system, he will generally specify the system by name, rather than Internet address. His
system has to translate that name to an address before it can do anything. Generally, only a few systems have
the database used to translate names to addresses. So the user’s system will want to send a query to one of the
systems that has the database. This query is going to be very short. It will certainly fit in one datagram. So
will the answer. Thus it seems silly to use TCP. Of course TCP does more than just break things up into
datagrams. It also makes sure that the data arrives, resending datagrams where necessary. But for a question
that fits in a single datagram, we don’t need all the complexity of TCP to do this. If we don’t get an answer

after a few seconds, we can just ask again. For applications like this, there are alternatives to TCP.

The most common alternative is UDP User Datagram Protocol. UDP is designed for applications where
you don’t need to put sequences of datagrams together. It fits into the system much like TCP. There is a UDP
header. The network software puts the UDP header on the front of your data, just as it would put a TCP header
on the front of your data. Then UDP sends the dawa to IP, which adds the IP header, putting UDP’s protocol
number in the protocol field instead of TCP’s protocol number. However UDP doesn't do as much as TCP does.
It doesn’t split data into multiple datagrams. It doesn’t keep track of what it has sent so it can resend if neces-
sary. About all that UDP provides is port pnmbers, so that several programs can use UDP at once. UDP port
numbers are used just like TCP port numbers, There are well-known port numbers for servers that use UDP.
Note that the UDP header is shorter than a TCP header. It still has source and destination port numbers, and a
checksum, but that’s about it. No sequence number, since it is not needed. UDP is used by the protocols that
handle name lookups (see [EN 116, RFC 882, and RFC 883), and a number of similar protocols.

Another alternative protocal is ICMP Internet Control Message Protocol. 1CMP is used for error mes-
sages, and other messages intended for the TCP/IP software itself, rather than any particular user program. For
example, if you auempt to connect 10 2 host, your system may get back an ICMP message saying host unreach-
able. ICMP can also be used to find out some information about the network. See RFC 792 for details of
ICMP. ICMP is similar to UDP, in that it handles messages that fit in one datagram. However it is even simpler
than UDP. It doesn't even have port numbers in its header. Since all ICMP messages are interpreted by the net-
wark software itself, no port numbers are needed to say where a ICMP message is supposed to go.

4. KEEPING TRACK OF NAMES AND INFORMATION: THE DOMAIN SYSTEM

. As we indicated earlier, the network software generaily needs a 32-bit Internct address in order to open a
connection or send a datagram. However users prefer to deal with computer names rather than numbers. Thus
there is a database that allows the software to look up a name and find the corresponding number. When the
Internet was small, this was easy. Each system would have a file that listed all of the other systems, giving both
their name and number. There are now t00 many computers for this approach to be practical. Thus thesc files
have been replaced by a set of name servers that keep track of host names and the comresponding Internet
addresses. (In fact these servers are somewhat more general than that. This is just one kind of information stored
in the domain system.) Note that a set of interlocking servers are used, rather than a single central one. There
are now so many different institutions connected to the Intemet that it would be impractical for them to notify a
central authority whenever they installed or moved a computer. Thus naming authority is delegated to individual
institutions. The name servers form a tree, corresponding to institutional structure. The names themselves follow
a similar structure. A typical example is the name BORAX.L.CS.MIT.EDU. This is a computer at the Laboratory
for Computer Science (LCS) at MIT. In order to find its Internet address, you might potentially have to consult
4 different servers. First, you would ask a central server (called the root) where the EDU server is. EDU is a
server that keeps track of educational institutions. The root server would give you the names and Internet
addresses of several servers for EDU, (There are several servers at each level, to allow for the possibly that one
might be down.) You would then ask EDU where the server for MIT is. Again, it would give you names and
Internet addresses of several servers for MIT. Generally, not all of those servers would be at MIT, to allow for
the possibility of a general power failure at MIT. Then you would ask MIT where the server for LCS is, and
finally you would ask one of the LCS servers about BORAX. The final result would be the Internet address for
BORAX.LCS.MITEDU. Each of thesc levels is refered to as a domain. The entire name,
BORAX.LCS.MIT.EDU, is called a domain name. (So are the names of the higher-level domains, such as
LCS.MIT.EDU, MIT.EDU, and EDU.)

Fortunately, you don’t really have to go through all of this most of the time. First of all, the root name
servers also happen to be the name servers for the top-level domains such as EDU. Thus a single query to a root
server will get you to MIT. Second, sofiware generally remembers answers that it got before, So once we look
up a name at LCS.MIT.EDU, our software remembers where to find servers for LCS.MIT.EDU, MIT.EDU, and
EDU. It also remembers the translation of BORAX.LCS.MIT.EDU. Each of these pieces of information has a
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time 1o live associated with it. Typically this is a few days. After-that, the information expires and has to be
looked up again. This allows institutions to change things.

The domain system is not limited to finding out Internet addresses. Each domain name is a node in a

- databasc The node can have records that define a number of different propcrties. Examples are Intemet address,

computer type, and a list of services provided by a computer. A program can ask for a specific piece of infor-
mation, or all information atout a given name. It is possible for a node in the database to be marked as an
“alias” (or nickname) for another node. It is also possible to use the domain system to store information about
users, mailing lists, or other objects.

There is an Internet standard defining the operation of these databases, as well as the protocols used to
make queries of them. Every network utility has to be able to make such queries, since this is now the official
way to evaluate host names. Generally utilities will talk to a server on their own system. This server will take
care of contacting the other servers for them. This keeps down the amount of code that has to be in each appli-
cation program.

The domain system is particularly important for handling computer mail. There are entry types to define
what computer handles mail for a given name, to specify where an individual is to receive mail, and to define

naailing lists. (See RFC's 882, 883, and 973 for specifications of the domain system. RFC 974 defines the use
of the domain system in sending mail.)

5. ROUTING

The description above indicated that the IP implementation is responsible for getting datagrams to the
destination indicated by the destination address, but little was said about how this would be done. The task of
finding how to get a datagram to its destination is referred to as routing, In fact many of the details depend upon
the particular implementation. However some general things can be said.

First, it is necessary to understand the model on which IP is based. IP assumes that a system is attached
to some local network. We assume that the system can send datagrams to any other system on its own network.
{(In the case of Ethemet, it simply finds the Ethernet address of the destination system, and puts the datagram out
on the Ethemnet) The problem comes when a system is asked to send a datagram to a system on a different net-
work. This problem is handled by gateways. A gateway is a system that connects a network with one or more
other networks. Gateways are often normal computers that happen to have more than one network interface. For
example, we have a Unix machine that has two different Ethemnet interfaces. Thus it is connected to networks
128.6.4 and 128.6.3. This machine can act as a gateway between those two networks. The software on that
machine must be set up so that it will forward datagrams from one network to the other. That is, if a machine
on network 128.6.4 sends a datagram to the gateway, and the datagram is addressed to a machine on network
128.6.3, the gateway will forward the datagram to the destination, Major communications centers often have
gateways that connect a number of different networks. (In many cases, special-purpose gateway systems provide
better performance or reliability than general-purpose sysltems acting as gateways. A number of vendors sell
such systems.) .

Routing in IP is based entirely upon the network number of the destination address. Each computer has a
table of network numbers. For each network number, a gateway is listed. This is the gateway to be used to get
to that network. Note that the gateway doesn’t have to connect directly to the network. It just has to be the best
place to go to get there. For example at Rutgers, our interface to NSFnet is at the John von Neuman Supercom-
puter Center (JYNC). Our connection to JVNC is via a high-speed serial line connected to a gateway whose
address is 128.6.3.12. Systems on net 128.6.3 will list 128.6.3.12 as the gateway for many off-campus networks.
However systems on net 128.6.4 will list 128.64.1 as the gateway to those same off-campus networks.
128.6.4.1 is the gateway between networks 128.6.4 and 128.6.3, so it is the first step in getting to JvNC.

When a computer wants to send a datagram, it first checks to see if the destination address is on the
system’s own local network. If so, the datagram can be sent directly. Otherwise, the system expects to find an
entry for the network that the destination address is on. The datagram is sent to the gateway listed in that entry.
This table can get quite big. For example, the Intemet now includes several hundred individual networks. Thus
various strategies have been developed to reduce the size of the routing table. One strategy is to depend upon
default routes. Often, there is only one gateway out of a network.

This gateway might connect a local Ethemnet to a campus-wide backbone network. In that case, we don’t
need to have a separate entry for every nctwork in the world. We simply define that gateway as a defoull.
When no specific route is found for a datagram, the datagram is sent to the default gateway, A default gateway
can even be used when there are several gateways on a network. There are provisions for gateways to send a
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message saying :

I'm not the best gateway -- use this one instead.

(The message is sent via ICMP. Sce RFC 792.) Most network software is designed to use these messages to add
entries to their routing tables. Suppose network 128.6.4 has two gateways, 128.6.4.59 and 128.64.1. 128.6.4.59
leads to several other internal Rutgers networks, 128.6.4.1 leads indirectly to the NSFnet. Suppose we set
128.6.4.59 as a default gateway, and have no other routing table entries. Now what happens when we need to
send a datagram to MIT? MIT is network 13. Since we have no entry for network 18, the datagram will be sent
to the defanlt, 128.6.4.59. As it happens, this gateway is the wrong one. So it will forward the datagram to
128.6.4.1. But it will also send back an error saying in effect:

to get to network 18, use 128.6.4.1

Our software will then add an entry to the routing table. Any future datagrams to MIT will then go directly to
128.6.4.1. (The error message is sent using the ICMP protocol. The message type is called ICMP redirect.)

Most IP experts recommend that individual computers should not try to keep track of the entire network.
Instead, they should start with default gateways, and let the gateways tell them the routes, as just described.
However this doesn’t say how the gateways should find out about the routes. The gateways can't depend upon
this strategy. They have to have fairly complete routing tables. For this, some sort of routing protocol is needed.
A routing protocol is simply a technique for the gateways to find each other, and keep up to date about the best
way 1o get to every network. RFC 1009 contzins a review of gateway design and routing. However rip.doc is
probably a better introduction to the subject. It contains some tutorial material, and a detailed description of the
most commonly-used routing protocol.

6. DETAILS ABOUT INTERNET ADDRESSES: SUBNETS AND BROADCASTING

As indicated earlier, Intemet addresses are 32-bit numbers, normally written as 4 octets (in decimal), e.g.
128.6.4.7. There are actually 3 different types of address. The problem is that the address has to indicate both
the network and the host within the network. It was felt that eventually there would be lots of networks. Many
of them would be small, but probably 24 bits would be needed to represent all the IP networks. It was also felt
that some very big networks might need 24 bits to represent all of their hosts. This would seem to lead to 48 bit
addresses. But the designers really wanted to use 32 bit addresses. So they adopted a kludge. The assumption is
that most of the networks will be small. So they set up three different ranges of address. Addresses beginning
with 1 to 126 use only the first octet for the network number. The other three octets are available for the host
number. Thus 24 bits are available for hosts. These numbers are used for large networks. But there can only be
126 of these very big networks. The Arpanet is one, and there are a few large commercial networks. But few
normal organizations get one of these class A addresses. For normal large organizations, class B addresses are
used. Class B addresses use the first two octets for the network number. Thus network numbers are 128.1
through 191.254. (We avoid 0 and 255, for reasons that we see below. We also avoid addresses beginning with
127, because that is used by some systems for special purposes.) The last two octets are available for host
addesses, giving 16 bits of host address. This allows for 64516 computers, which should be enough for most
organizations. (It is possible 10 get more than one class B address, if you run out) Finally, class C addresses
ase three octets, in the range 192.1.1 to 223.254.254. These allow only 254 hosts on each network, but there
can be lots of these networks. Addresses above 223 are reserved for future use, as class D and E (which are
currently not defined).

Many large organizations find it convenient to divide their network number into subnets. For example,
Rutgers has been assigned a class B address, 128.6. We find it convenient to use the third octet of the address to
indicate which Ethemet a host is on. This division has no significance outside of Rutgers. A computer at another
institution would treat all datagrams addressed to 128.6 the same way. They would not look at the third octet of
the address. Thus computers outside Rutgers would rot have different routes for 128.6.4 or 128.6.5. But inside
Rutgers, we treat 128.6.4 and 128.6.5 as separate networks. In effect, gateways inside Rutgers have separate
entries for each Rutgers subnet, whereas gateways outside Rutgers just have one entry for 128.6. Note that we
-cuXi do exactly the same thing by using a separate class C address for each Ethernet. As far as Rutgers is con-
cemed, it would be just as convenicnt for us to have a number of class C addresses. However using class C
addresses would make things inconvenient for the rest of the world. Every institution that wanted to talk to us
would have to have a separate entry for each one of our networks. If every institution did this, there would be
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far too many networks for any reasonable gateway o keep track of.-By subdividing a class B network, we hide
our internal structure from everyone else, and save them trouble. This subnet strategy requires special provi-
sions in the network software. It is described in RFC 950.

0 a~.d 255 have special meanings. 0 is reserved for machines that don’t know their address. In certain cir-
cumstances it is possible for a machine not to know the number of the network it is on, or even its own host
address, For example, 0.0.0.23 would be a machine that knew it was host number 23, but didn’t know on what
network,

255 is used for broadcast. A broadcast is a message that you want every system on the network to see.
Broadcasts are used in some situations where you don’t know who to talk to. For example, suppose you need to
look up a host name and get its Internet address. Sometimes you don’t know the address of the nearest name
server. In that case, you might send the request as a broadcast. There are also cases where a number of systems
are interested in information. It is then less expensive to send a single broadcast than to send datagrams indivi-
dually to each host that is interested in the information. In order to send a broadcast, you use an address that is
made by using your network address, with all ones in the part of the address where the host number goes. For
example, if you are on network 128.6.4, you wonld use 128.6.4.255 for broadcasts. How this is actually
implemented depends upon the medium. It is not possible to send broadcasts on the Arpanet, or on point to
point lines. However it is possible on an Ethemnet. If you use an Ethernet address with all its bits on (all ones),
every machine on the Ethernet is supposed to look at that datagram.

Although the official broadcast address for network 128.6.4 is now 128.6.4.255, there are some other
addresses that may be treated as broadcasts by cenain implementations. For convenience, the standard also
allows 255.255.255.255 to be used. This refers to all hosts on the local network. It is often simpler to use
255.255.255.255 instead of finding out the network number for the local network and forming a broadcast
address such as 128.6.4.255. In addition, certain older implementations may use O instead of 255 o form the
broadcast address. Such implementations would use 128.6.4.0 instead of 128.6.4.255 as the broadcast address
on network 128.6.4. Finally, certain older implementations may not understand about subnets. Thus they con-
sider the network number to be 128.6. In that case, they will assume a broadcast address of 128.6.255.255 or
128.6.0.0. Until support for broadcasts is implemented properly, it can be a somewhat dangerous feature 0 use.

Because O and 255 are used for unknown and broadcast addresses, normal hosts should never be given
addresses containing O or 255. Addresses should never begin with 0, 127, or any number above 223. Addresses
violating these rules are sometimes referred to as Martians because of rumors that the Central University of
Mars is using network 225.

7. DATAGRAM FRAGMENTATION AND REASSEMBLY

TCPAP is designed for use with many different kinds of network. Unfortunately, network designers do
not agree about how big packets can be. Ethemet packets can be 1500 octets long. Arpanet packets have a
maximum of around 1000 octets. Some very fast networks have much larger packet sizes. At first, you might
think that IP should simply settle on the smallest possible size. Unfortunately, this would cause serious perfor-
mance problems. When transferring large files, big packets are far more efficient than small ones. So we want
to be able to use the largest packet size possible. But we also want to be able to handle networks with small
limits. There are two provisions for this. First, TCP has the ability to negotiate about datagram size. When a
TCP connection first opens, both ends can send the maximum datagram size they can handle. The smaller of
these numbers is used for the rest of the connection. This allows two implementations that can handle big
datagrams to use them, but also lets them talk to implementations that can’t handle them. However this doesn’t
completely solve the problem. The most serious problem is that the two ends don’t necessarily know about all of
the steps in between. For example, when sending data between Rutgers and Berkeley, it is likely that both com-
puters will be on Ethemnets. Thus they will both be prepared to handle 1500-octet datagrams. However the con-
nection will at some point end up going over the Arpanet. It can’t handle packets of that size. For this reason,
there are provisions to split datagrams up into pieces. (This is referred to as "fragmentation”,) The IP header
contains fields indicating the a datagram has been split, and enough information to et the pieces be put back
together. If a gateway connects an Ethemnet to the Arpanet, it must be prepared to take 1500-octet Ethernet pack-
ets and split them into pieces that will fit on the Arpanet. Furthermore, every host implementation of TCP/IP
must be prepared to accept pieces and put them back together. This is referred to as reassembly.

TCP/IP implementations differ in the approach they take to deciding on datagram size. It is fairly com-
mon for implementations to use 576-byte datagrams whenever they can't verify that the entire path is able to
handle larger packets. This rather conservative sirategy is used because of the number of implementations with
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bugs in the code to reassemble fragments. Implementors often try to avoid ever having fragmentation occur,
Different implementors take different approaches to deciding when it is safe to use large datagrams. Some use
them only for the local network. Others will use them for any network on the same campus. 576 bytes is a
safe size, which every implementation must support.

8. ETHERNET ENCAPSULATION: ARP

There was a brief discussion earlier about what IP datagrams look like on an Ethemet. The discussion
shoved the Ethernet header and checksum. However it left one hole: It didn't say how to figure out what Ether-
net address to use when you want to talk to a given Internet address. In fact, there is a separate protocol for this,
called ARP Address Resolution Protocol. (Note by the way that ARP is not an IP protocol. That is, the ARP
datagrams do not have IP headers.) Suppose you are on system 128.6.4.194 and ycu want to connect to system
128.6.4.7. Your system will first verify that 128.6.4.7 is on the same network, so it can tatk directly via Ethemnet.
Then it will look up 128.6.4.7 in its ARP table, to see if it already knows the Ethernet address. If so, it will
stick on an Ethernet header, and send the packet. But suppose this system is not in the ARP table, There is no
way to send the packet, becanse you necd the Ethernet address. So it uses the ARP protocol to send an ARP
request. Essentially an ARP request says :

I need the Ethernet address for 128.64.7

Every system listens 1o ARP requests. When a system sees an ARP request for itself, it is required to respond.
S0 128.6.4.7 will see the request, and will respond with an ARP reply saying in effect :

128.64.7 is 8:0:20:1:56:34

(Recall that Ethernet addresses are 48 bits. This is 6 octets. Ethernet addresses are conventionally shown in hex,
using the punctuation shown.) Your system will save this information in its ARP table, so future packets will go
directly. Most systems treat the ARP table as a cache, and clear entries in it if they have not been used in a
centain period of time.

Note by the way that ARP requests must be sent as broadcasts. There is no way that an ARP request can
be sent directly to the right system. After all, the whole reason for sending an ARP request is that you don’t
know the Ethernet address. So an Ethemnet address of all ones is used, i.e. fRff:ff:ff:ff:ff. By convention, every
machine on the Ethemet is required to pay attention to packets with this as an address. So every system sees
every ARP requests. They all look to see whether the request is for their own address. If so, they respond. If
not, they could just ignore it. (Some hosts will use ARP requests to update their knowledge about other hosts
on the network, even if the request isn’t for them,) Note that packets whose IP address indicates broadcast (e.g.
255.255.255.255 or 128.6.4.255) are also sent with an Ethernet address that is all ones.

9. GETTING MORE INFORMATION

This directory contains documents describing the major protocols. There are literally hundreds of docu-
ments, so we have chosen the ones that seem most important. Intenet standards are called RFC's. RFC stands
for Request for Comment. A proposed standard is initially issued as a proposal, and given an RFC number.
When it is finally accepted, it is added to Official Intcmet Protocols, but it is still referred to by the RFC
number. We have also included two IEN’s. (IEN’s used to be a separate classification for more informal docu-
ments. This classification no longer exists -- RFC's are now used for all official Internet documents, and a mail-
ing list is used for more informal reports.) The convention is that whenever an RFC is revised, the revised ver-
sion gets a new number. This is fine for most purposes, but it causes problems with two documents: Assigned
Numbers and Official Internet Protocols. These documents are being revised all the time, so the RFC number
keeps changing. You will have to look in rfc-index.txt to find the number of the latest edition. Anyone who is
seriously interested in TCP/IP should read the RFC describing IP (791). RFC 1009 is also useful. It is a
specification for gateways to be used by NSFnet. As such, it contains an overview of a lot of the TCP/IP tech-
nology. You should probably also read the description of at least one of the application protocols, just to get a
feel for the way things work. Mail is probably a good one (821/822). TCP (793) is of course a very basic
specification. However the spec is fairly complex, so you should only read this when you have the time and
patience to think about it carefully. Fortunately, the author of the major RFC’s (Jor Postel) is a very good
writer. The TCP RFC is far easier to read than you would expect, given the complexity of what it is describing.
You can look at the other RFC’s as you become curious about their subject matter,
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Here is a list of the documents you are more likely to want:

rfc-index list of all RFC’s

rfel012 somewhat fuller list of all RFC's

rfcl0l Official Protocols. It's useful to scan this to see what tasks protocols have been built for,
This defines which RFC’s are actual standards, as opposed (o requests for comments,

rfcl010 Assigned Numbers. If you are working with TCP/IP, you will probably want a hardcopy of

this as a reference. It's not very exciting to read. It lists all the offically defined well-
known ports and lots of other things.

rfcl009 NSFnet gateway specifications. A good overview of IP routing and gateway technology.

rfc1001/2 netBIOS: networking for PC’s '

rfe973 update on domains

rfc959 FTP (file transfer)

rfc950 subnets

rfc937 POP?2: protocol for reading mail on PC's

rfc894 how IP is to be put on Ethemnet, see also rfc825

Hc882/3 domains (the database used to go from host names to Internet address and back -- also
used to handle UUCP these days), Sece also rfc973

rfe854f5 " telnet - protocol for remote logins

rfc826 ARP - protocol for finding out Ethemnet addresses

rfc821/2 mail

rfc8l4 names and ports - general concepts behind well-known ports

rfc793 TCP

rfc792 ICMP

rfe791 P

rfc768 UDP

rip.doc details of the most commonly-used routing protocol

ien-116 old name server (still needed by several kinds of system)

ien48 the Catenet model, general description of the philosophy behind TCF/IP

The following documents are somewhat more specialized.

rfc813 window and acknowledgement strategies in TCP
fc815 datagram reassembly techniques
rfc816 fault isolation and resolution techniques
rfe817 modularity and efficiency in implementation
rfc879 the maximum segment size option in TCP
rfc896 congestion control
fc827.888.904,.975 985

EGP and related issues

To those of you who may be reading this. document remotely instead of at Rutgers: The most important
RFC's have been collected into a three-volume set, the DDN Protocol Handbook. It is available from the DDN
Network Information Center, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025 (tele-
phone: 800-235-3155). You should be able to get them via anonymous FIP from sri-nic.arpa. File names are:

RFC’s:

rfc:ffc-index.txt

rfcrfoxxx.xt

IEN’s:
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ien:ien-index.txt
ien:ien-xxx.ixt

rip.doc is available by anonymous FTP from topaz.rutgers.edu, as /pudficp-ip-docs/rip.doc.

Si. . with access to UUCP but not FTP may be able to retreive them via UUCP from UUCP host rutgers.

The file names would be

RFC's:

. ftopaz/pub/pub/tcp-ip-docs/ric-index.txt
[topaz/pub/pub/tcp-ip-docs/rfcxxx.txt

IEN's:
/topaz/pub/pub/tcp-ip-docs/ien-index.txt
/topaz/pub/pub/tcp-ip-docs/ien-xxx.txt

Jtopaz/pub/pub/tcp-ip-docs/rip.doc
Note that SRI-NIC has the entire set of RFC's and IEN’s, but rutgers and topaz have only those

specifically mentioned above.
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This document is intended to help people who planning to set up a new
network based on the Internet protocols, or to administer an existing
one. Tt assumes a basic familiarity with the TCP/IP protocols,
particurarly the structure of Internet addresses. A companion paper,
"Introduction to the Internet Protocols", may provide a convenient
introduction. Thisgs document does not attempt to replace technical
documentation £for your specific TCP/IP implementation. Rather, it
attempts to give overall background that is not specific to any
partictular implementation. It is directed specifically at networks of
"medium" complexity. That 1is, it is probably appropriate for a
network involwving several dozen buildings. Those planning to manage
larger networks will need more preparation than you can get by reading
this document.

In a number of cases, commands and output from Berkeley Unix are
shown. Most computer systere have commands that are similar in
function te these. It seemed more useful to give some actual examples
that to limit myself to general talk, even if the actual output you
see is slightly different.

1. The problem

This document will emphasize primarily "logical" network architecture,
There are many documents and articles in the trade press that discuss
actual network media, such as Ethernet, Token Ring, etc. What is
generally not made clear in these articles is that the choice of
network media is generally not all that critical for the overall
design of a network. What can be done by the network is generally
determined more by the network protocols supperted, and the quality of
the implementations. In practice, media are normally chosen based on
purely pragmatic grounds: what media are supported by the particular
types of computer that you have to connect. Generally this means that
Ethernet is used for medium-scale systems, Ethernet or a network based
on twisted—pair wiring for micro networks, and specialized high-speed
networks (typically token ring) for campus-wide backbones, and for
local networks involving super-computer and other very high-
performance applications.

Thus this document assumes that you have chesen and installed
individual networks such as Ethernet or token ring, and your vendor
has helped you connect your computers to these network. You are now
faced with the interrelated problems of

- configuring the software on your computers

- finding a way to connect individual Ethernets, token rings, etc.,
to form a single coherent network

- connecting your networks to the outside world
My primary thesis in this document is that these decisions require a

bit of advance thought. In fact, most networks need an
1
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"architecture”. This consists of a way of assigning addresses, a way
of doing routing, and various choices about how hosts interact with
the network. These decisions need to be made for the entire network,
preferably when it is first being installed. ,

2. Routing and Addressing

Many of the decisions that you need to make in setting up TCP/IP
depend upcn routing, so it will be best to give a bit of background on
that topic now. I will return to routing im a later section when

discussing gateways and bridges. In general, IP datagrams pass
through many networks while they are going Dbetween the source and
destination. Here's a typical example. (Addresses used in the

examples are taken from Rutgers University.)

network 1 network 2 network 3
128.6.4 128.6.21 128.121
I | | | | } ]
1 | | | __| f |
128.6.4.2 128.6.4.3 128.6. 128.6.22.1 128.121.50.2

3.1
128.6.21.2 128.121.50.1

computer A computer B gateway R gateway S caomputer C

This diagram shows three normal computer systems, two gateways, and
three networks. The networks might be Ethernets, token rings, or any
other sort. Network 2 could even be a single point to point line
connecting gateways R and 5.

Note that computer A can send datagrams to computer B directly, usaing
network 1. However it can’t reach computer € directly, since they
aren’'t on the same network. There are several ways to connect
separate networks. This diagram assumes that gateways are used. {(In a
later section, we’ll look at an alternative.) 1In this case, datagrams
going between A and C must be sent through gateway R, network 2, and
gateway 5. Every computer that uses TCP/IP needs appropriate
information and algorithms to allow it to know when datagrams must be
sent through a gateway, and to choose an appropriate gateway.

Routing is very closely tied to the choice of addresses. MNote that
the address of each computer begins with the number of the network
that it’s attached to. Thus 128.6.4.2 and 128.6.4.3 are both on
network 128.6.4. Next, notice that gateways, whose job is to connect
networks, have an address on each of those networks. For example,
gateway R connects networks 128.6.4 and 128.6.21. Its connection to
network 128.6.4 has the address 128.6.4.1. 1Its connection to network
128.6.21 has the address 128.6.21.2.

Because of this association between addresses and networks, routing
decisions can be based strictly on the network number of the
2
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destination. Here’s what the routing information for computer A might
look like:

network gateway metric
128.6.4 none 0
128.6.21 128.6.4.1 1
128,121 128.6.4.1 2

N -

>From this table, computer A can tell that datagrams for computers on
network 128.6.4 can be sent directly, and datagrams for computers on

networks 128.6.21 and 128.121 need to be sent to gateway R for

forwarding. The "metric™ is used by some routing algorithma as a

measure of how far away the destination is. 1In this case, the metric

simply indicates how many gateways the datagram has to go through.

(This is often referred to as a "hop count".)

When computer A is ready to send a datagram, it examines the
destination address. The network number is taken from the beginning
of the address and looked up in the routing table. The table entry
indicates whether the packet should be sent directly to the
destination or to a gatewav.

Note that a gateway is simply a computer that is connected to two
different networks, and is prepared to forward packets between them.
In many cases it is most efficient to use special-purpose equipment
designed for use as a gateway. However it is perfectly possible to
use ordinary computers as gateways, as long as they have more than one
network interface, and their software is prepared to forward
datagrams. Most major TCP/1IP implementations (even for
microcomputers) are designed to let you use your computer as a
gateway., However some of this software has limitations that can cause
trouble for your network.

3. Choesing an addressing structure

The first comment to make about addresses is a warning: Before you
start wusing a TCP/IP network, you must get one or more official
network numbers. TCP/IP addresses look like this: 128.6.4.3. This
address is used by one computer at Rutgers University. The first part
of it, 128.6, is a network number, allocated to Rutgers by a central
authority. Before you start allocating addresses to your computers,
you must get an official network number. Unfortunately, some people
set up networks using either a randomly-chosen number, ¢r a number
taken from examples in vendor documentation. While this may work in
the short run, it is a very bad idea for the long run. Eventually,
you will want te connect your network to some other organization’s
network, -Even if your organization is highly secret and vexy
concerned about security, somewhere in your organization there is
going to be a research computer that ends up being connected to a
nearby university. That university will probably be connected to a
large=-3scale national network. As soon as one of your datagrams
3
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escapes your local network, the organization you are talking to is
going to become very confused, because the addresses that appear in
your datagrams are probably officially allocated to someone else.

The sclution to this is simple: get your own network number from the
beginning. It costs nothing. If you delay it, theun sometime years
from now you are going to be faced with the Jjob of changing every
address on a large network. Network numbers are currently assigned by
the DDN Network Information Center, SRI International, 333 Ravenswood
Avenue, Menlo Park, California 94025 (telephone: B0Q-235-3155). You
can get a network number no matter what your network is’ being used
for. You do not need authorization to connect to the Defense Data
Network in order to get a number. The main plece of information that
will be needed when you apply for a network number is that address
class that you want. See below for a discussion of this.

In many ways, the most important decision you have to make in setting
up a network is how you will assign Internet addresses to your
computers. This choice should be made with a view of how your network
is likely to grow. Otherwise, you will find that you have to change
addresses. When you have several hundred computers, address changes
can be nearly impossible.

Addresses are critical because Internet datagrams are routed on the
baais of their address. For example, addresses at Rutgers University
have a 2-level structure. A typical address is 128.6.4.3. 128.6 is
assigned to Rutgers University by a central authority. As far as the
outside world is concerned, 128.6 is a single network. Other
universities send any packet whose address begins with 128.6 to the
nearest Rutgers gateway. However within Rutgers, we divide up our
address space into "subnets". We use the next 8 bits of address to
indicate which subnet a computer belongs to. 128.6.4.3 belongs to
subnet 128.6.4. Generally subnets correspond to physical networks,
e.g. separate Ethernets, although as we will see later there can be
exceptions. Systems inside Rutgers, unlike those outside, contain
information about the Rutgers subnet structure. So once a packet for
128.6.4.3 arrives at Rutgers, the Rutgers network will route it to the
departmental Ethernet, token ring, or whatever, that has been assigned
subnet number 128.6.4.

Wwhen you start a network, there are several addressing decisions that
face you:

- Do you subdivide your address space?
- If so, do you use subnets or class C addresses?
- You do you allocate subnets or class C networks?

- How big an address space do you need?
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3.1 Should you subdivide your address space?

It is not necessary to use subnets at all. There are network
technolegies that allow an entire campus or company to act as a single
large logical Ethernet, so that no internal routing is necessary. If
you use this technology, then you do not need to subdivide your
address space. In that case, the only decision you have to make is
what class address to apply for. However we recommend using either a
subnet approach or some other method of subdividing. your address space
in all cases:

- In section 5.2 we will argue that internal gateways are desirable
for networks of any degree of complexity.

- Even if you do not need gateways now, you may find later that you
need to use them. Thus it probably makes sense to assign
addresses as 1if each Ethernet or token ring was going to be a
separate subnet. This will allow for conversion to real subnets
later if it proves necessary.

- For network .maintenance purposes, it 1is convenient to have
addresses whose structure corresponds to the structure of the
network. That is, when vyou see a strayv packet from system
128.6.4.3, it is nice to know that all addresses beginning with
128.6.4 are in a particular building.

3.2 Subnets vs. multiple network numbers

Suppese that you have been convinced that it’s a good idea to impose
some structure on your addresses. The next question is what that
structure should ke. There are two basic approaches. One is subnets.
The other is multiple network numbers.

The Internet standards specify what constitutes a network number. For
numbers beginning with 128 through 191 ‘(the most commen numbers these
days), the firxst two octets form the network number. E.g. in
140.3.50.1, 140.3 is the network numbér. Network numbers are assigned
to a particular organization. What you do with the next two octets is
up to you. You could choose to make the next octet be a subnet
number, or you could use some cther scheme entirely. Gateways within
your organization will be set up to know the subnetting scheme that
you are using. However outside your organization, no one will know
that 140.3.50 is one subnet and 140.3.51 is another. They will simply
know that 140.3 is your organization. Unfortunately, this ability to
add additional structure to the address via subnets was not present in
the original TCP/IP specifications. Thus some software is incapable
of being told about subnets.

If enough of the software that you are using has this problem, it may

be impractical for you to use subnets. Some organizations have used a

different approach. It is possible for an organization to apply for.
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several network numbers. Instead of dividing a single network numbex,
say 140.3, into several subnets, e.g. 140.3.1 through 140.3.10, you
could apply for 10 different netwerk numbers. Thus you might be
assigned the range 140.3 through 140.12. All TCP/IP software will
know that these are different network numbers.

While using separate network numbers will work just fine within your
organization, it has two very serious disadvantages. The first, and
less serious, is that it wastes address space. There are only about
1.6,008 possible class B addresses. We cannot afford to waste 10 of
them on your organization, unless it is very large. This objection is
less serious because you would normally ask for class C addresses for
this purpose, and there are about 2 million possible class C
addresses.

The more serious problem with using several network numbers rather
than subnets is that it overloads the routing tables in the rest of
the Internet. As mentioned above, when you divide your network number
into subnets, this division is known within your organization, but not
outside it.. Thus systems outside your organization need only one
entry in their tables in order to be able to reach you. E.g. other
universities have entries in their routing tables for 128.6, which is
the Rutgers network number. If you use a range of network numbers
instead of subnets, that division will be visible to the entire
Internet. If we used 128.6 through 128.16 insatead of subdividing
128.6, other universities would need entries for each of those network

numbers in their routing tables. As of this writing the routing
tables in many of the national networks are exceeding the 3ize of the
current routing technology. It would be considered extremely

unfriendly for any organization to use more than one network number.
This may not be a problem if your network is going to be completely
self-contained, or if only one small piece of it will be connected to
the outside world. Nevertheleas, most TCP/IP experts strongly
recommend that you use gsubnets rather than multiple networksa. The
only reason for considering multiple networks is to deal with software
that cannot handle subnets. This was a problem a few years ago, but
is currently less serious. As long as your gateways can handle
subnets, you can deal with a few individual computers that cannot by
using "proxy ARP" (see below).

3.3 How to allocate subnet or network numbers

Now that you have decided to use subnets or multiple network numbers,
you have to decide how to allocate them. Normally this is fairly
easy. Each physical network, e.g. Ethernet or token ring, is assigned
a separate subnet or network number. However you do have some
options.

In some cases it may make sense to assign several subnet numbers to a

single physical network. At Rutgers we have a single Ethernet that

spans three buildings, using repeaters. It is very clear to us that

as computers are added to this BEthernet, it is going to have to be
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split into several separate Ethernets. In order to avoid having to
change addresses when this is done, we have allocated three different
subnet numbers to this Ethernet, one per building. {This would be
handy even if we didn’t plan to split the Ethernet, just to help us
keep track of where computers are.) However before doing this, make
very sure that the software on all of your computers can handle a
network that has three different network numbers on it.

You also have to choose a "subnet mask". This is used by the software
oen your systems to separate the subnet from the rest of the address.
S0 far we have always assumed that the first two octets are the
network number, and the next octet is the subnet number. For class B
addresses, the standards specify that the first two octets are the
network number. However we are free to choose the boundary between
the subnet number and the rest ¢f the address. It‘s very common to
have a one-octet subnet number, but that’s not the only possible
choice. Let’s look again at a class B address, e.g. 128.6.4.3. It is
easy to see that if the third octet is used for a subret number, there
are 256 possible subnets and within each subnet there are 256 possible
addresses. (Actually, the numbers are more like 254, since it is
generally a bad idea to use 0 or 255 for subnet numbers or addresses.)
Suppose you know that you will never have more than 128 computers on a
given subnet, but you are afraid you might need more than 256 subnets.
(For example, you might have a campus with lots of small buildings.)
In that case, you could define 10 bits for the subnet number, leaving
6 bits for addresses within each subnet. This choice is expressed by
a bit mask, using ones for the bits used by the network and subnet
number, and 0’3 for the bits used for individual addresses. Our
normal subnet choice is given as 255,255.255.0. If we chose 10 bit
subnet numbers and 6 bit addresses, the 3subnet mask would be
255.255.255.182.

Generally it is possible to specify the subnet mask for each computer
as part of configuring its TCP/IP software. The TCP/IP protocols also
allow for computers to send a query asking what the subnet mask is.
If your network supports broadcast queries, and there is at least one
computer or gateway on the network that knows the subnet mask, it may
he unnecessary to set it on the other compuzers. (This capability
brings with it a whole new set of possible problems. One well-known
TCP/IP implementation would answer with the wrong subnet mask when
queried, thus leading causing every other computer on the network to
be misconfigured.) '

3.3.1 Dealing with multir'e "virtual" subnets on one network

Most software i3 written under the assumption that every computer on
the local network has the same subnet number. When traffic is being
sent to a machine with a different subnet number, the software will
generally expect to find a gateway to handle forwarding ‘to that
subnet. Let’s look at the implications., Suppose subnets 128.6.19% and
128.6.20 are on the same Ethernet. Consider the way things look from
the point of view of a computer with address 128.6.19.3. It will have
7
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no problem sending to other machines with addresses 128.6.19.x. They
are on the same subnet, and so our computer will know to send directly
to them on the local Ethernet. However suppose it is asked to send a
packet to 128.6.20.2. Since this is a different subnet, most scftware
will expect to find a gateway that handles forwarding between the two
subnets. Of course there isn‘t a gateway between subnets 128.6.19 and
128.6.20, since they are on the same Ethernet. Thus it must be
possible to tell your software that 128.6.20 is actually cn the same
Ethernet.

For the most common TCP/IP implementations, it is possible to deal
with more than one subnet on a network. For example, Berkeley Unix
allows you to define gateways using a command “route add". Suppose
that you get £from subnet 128.6.19 to subnet 128.6.4 using a gateway
whose address is 128.6.19.1. You would use the command

route add 128.6.4.0 128.6.19.1 1

This says that to reach subnet 128.6.4, traffic should be sent via the
gateway at 128.6.19.1, and that the route only has to go through one
gateway. The "1" is referred to as the "routing metric". If you use
a metric of 0, you are saying that the destination subnet is on the
same network, and no gateway is needed. In our example, on system
128.6.19.3, you would use

route add 128.6.20.0 128.6.19.1 0

The actual address used in place of 128.6.19.1 is irrelevant. The
metric of 0 says that no gateway is actually going to be used, so the
gateway address is not used. However it muast be a legal address on
the local network.

Note that the commands in this section are simply examples. You should
look in the documentation for your particular implementation to see
how to configure your routing.

3.4 Choosing an address class

When you apply for an official network number, you will be asked what
class of network number you need. The possible answers are A, B, and

C. This affects how large an address space you will be allocated.
Class A addresses are one octet long, class B addresses are 2 octets,
and class C addresses are 3 octets. This represents a tradeoff:
there are a lot more class C addresses than class A addresses, but the
class C addresses don’t allow as many hosts. The idea was that there
would be a few very large networks, a moderate number of medium-size
ones, and a lot of mom-and-pop stores that would have small networks.
Here is a table showing the distinction:

class range of first octet network rest possible addresses
-9 1 - 126 P q.r.s 16777214
B 128 - 191 p.-q r.s 65534
8
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c 182 - 223 p.q.r s .254

For example network 10, a c¢lass A network, has addresses between
10.0.0.1 and 10.255.255.254. So it allows 254**3, or about 16 million

possible addresses. {Actually, network 10 has allocated addresses
where some of the octeta are zero, 3o there are a few more networka
poasible.) Network 192.12.88, a class C network has hosts between

192.12.88.1 and 128,12,88.254, i.e. 254 possible hosts.

In general, you will be expected to choose the lowest class that will
provide you with enough addresses to handle your growth over the next
few years. In general organizations that have computers in many
buildings will probably need and be able to get a class B address,
assuming that they are going to use subnetting. (If you are going teo
use many separate network numbers, you would ask for a number of class
C addresses.) Class A addresses are normally used only for large
public networks and for a few very large corporate networks.

4. Setting up routing for an individual computer

All TCP/IP implementations require some configuration for each host.
In some cases this is done in a "system generation". In cther cases,
various startup and configuration files must be set up on the system.
Still other systems get configuration information across the network

from a '"server". While the details differ, the same kinds of
information need to be supplied for most implementations. This
includes

- parameters describing the specific machine, such as its Intermet
address.

- parameters describing the network, such as the subnet mask (if
any’

- routing software and the tables that drive it
- startup of various programs needed to handle network tasks
Before a machine is installed on your network, a coordinator should

assign it a host name and Internet address. If the machine has more
than one network interface, you must assign a separate Internet

address for each. (In most cases, the same host name can be used.
The name goes with the machine as a whole, whereas the address 1s
associated with the connection to a specific network.) The address

should begin with the network number for the network to which it is to
be attached. We recommend that you assign addresses starting from 1.
Should you find that you need more subnets than your current subnet
mask allows, you may later need to expand the subnet mask to use more
bits. If all addresses use small numbers, this will be possible.

Generally the Internet address must be specified individually in a
configuration file on each computer. However some computers
9
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{particularly chese without permanent disks on- which configuration
information could be stored) find out their Internet address by
sending a broadcast request over the network. 1In that case, you will
have to make sure that some other system is configured to answer the
request. When a system asks feor its Internet address, enough
information must be put into the request to allow another system to
recognize it and to send a response back. For Ethernet systems,
generally the request will include the Ethernet address of the
requesting system. Ethernet addresses are assigned by the ccmputer
manufacturers, and are guaranteed to be unique. Thus they are a good
way of identifying the computer. and of course the Ethernet address
is also needed in order to send the response back. If it is used as
the basis for address lookup, the system that is to answer the request
will need a table of Ethernet addresses and the corresponding Internet
address. The only problem in constructing this table will be finding
the Ethernet address for eaci. computer. Generally, computers are
designed so that they print the Ethernet address on the conasole
shortly after being turned on. However in some cases you may have to
type a command that displays information about the Ethernet interface.

Generally the subnet mask should be specified in a configuration file
asaociated with the computer. {(For Unix systems, the "jfeconfig"
command is used to specify both the Internet address and subnet mask.)
However there are provisions in the IP protocols for a computer to
broadcast a request asking for the subnet mask. The subnet mask is an
attiibute of the network. That is, it is the same for all computers

on a given subnet. Thus there is no separate subnet table
corresponding to the Ethernet/Internet address mapping table wused to
answer address queries. Generally any machine on the network that

believes it knows the subnet mask will answer any query about the
subnet mask. For that reason, an incorrect subnet mask setting cn one
machine can cause confusion throughout the network.

Normally the configuration files do roughly the following things:

- enable each of the network interfaces (Ethernet interface, serial
lines, etc.) Normally this involves specifying an Internet
address and subnet mask for each, as well as other options that
will be described in your vendor’s documentation.

- establish network routing information, either by commands that
add fixed routes, or by starting a program that obtains them
dynamically.

- turn on the name server (used for looking up names and finding
the corresponding Internet address —-— see the section on the
domain aystem in the Introduction to TCP/IP).

- set various other information needed by the system software, such
as the name of the system itself.

— start various "daemons". These are programs that provide network
services to other systems on the network, and to users on this
system.

10°
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It is not practical to document these steps in detail, since they
differ for each vendor. This section will concentrate on a few issues
where your choice will depend upon overall decisions about how your

network is te operate. These overall network policy decisicons are
often not as well documented by the vendors as the details of how to
start specific programs. Note that some care will be necessary to

integrate commands that you add for routing, etec., into the startup
sequence at the right point. Some of the most mysterious problems
occur when network routing is not set up before a program needs to
make a network query, or when a program attempts to look up a host
name before the name server has finished loading all of the names from
a master name server.

4.1 How datagrams are routed

If your system consists of a single Ethernet or similar medium, you do
not need to give routing much attention. However for more complex
systems, each of vyour machines needs a routing table that lists a
gateway and interface to use for every possible destination network.
A simple example of this was given at the beginning of this section.
However it is now necessary to describe the way routing ‘vorks in a bit
more detail. On most systems, the routing table looks something like
the following. (This example was taken from a system running Berkeley
Unix, wusing the command "netstat -n -r". Some columns containing
statistical information have been omitted.)

Destination Gateway Flags Interface
128.6.5.3 128.6.7.1 UHGD il0
128.6.5.21 128.6.7.1 UHGD ilo
127.0.0.1 127.0.0.1 UH 1lo0
128.6.4 128.6.4.61 U pel
128.6.6 128.6.7.26 U ilo
128.6.7 128.6.7.26 U ilo0
128.6.2 128.6.7.1 UG ilo0
10 128.6.4.27 UG pel
128.121 128.6.4.27 UG pel
default 128.6.4.27 UG pe0

The example system is connected to two Ethernets:

controller network address other networks
ilQ 128.6.7 128.6.7.26 128.6.6
pel 128.6.4 128.6.4.61 none

The first column shows the designation for the controllex hardware
that connects the computer to that Ethernet. (This system happens to
have controllers from two different vendors. The first one is made by
Interlan, the second by Pyramid.) The second column is the network
number for the network. The third column is this computer’s Internet
address on that network. The last column shows other subnets that

share the same physical network.
11




tcpipman

Now let’s look at the routing table. For the moment, let us ignore
the £first 3 lines. The majority of the table consists of a set of
entries describing networks. For each network, the other three
columns show where to send datagrams destined for that network. If
the "G" flag is present in the third column, datagrams for that
network must be sent through a gateway. The second column shows the
addresa of the gateway to be used. If the "G" flag is not present,
the computer is directly connected to the network in question. So
datagrams for that network should be sent using the controller shown
in the third column. The "U" flag in the -third column simply
indicates that the route specified by that line is up, i.e. that no
errors have occured indicating that the path is unusable.

The first 3 lines show "host routes", indicated by the "H" £lag in
column three. Routing tables normally have entries for entire
networks or subnets, For example, the entry

128.6.2 128.6.7.1 uG il0

indicates that datagrams for any computer on network 128.6.2 (i.e,
addresses 128.6.2.1 through 128.6.2.254) should be sent to gateway
128.6.7.1 for forwarding. However sometimes routes apply only to a
specific computer, rather than to a whole network. In that case, a
host route is used. The first column then shows a complete address,
and the "H" flag is present in ceolumn 3. E.g. the entry

128.6.5.21 128.6.7.1 UHGD 110

indicates that datagrams for the specific address 128.6.5.21 should be
sent to the gateway 128.6.7.1. As with network routes, the "G" flag

is used for routes that involve a gateway. The "D" £flag indicates
that the route was added dynamically, based on an ICMP redirect
message from a gateway. (See below for details.)

The following route is special:

127.0.0.1 127.0.0.1 UH 100
127.0.0.1 is the address of the "loopback device". This is a dummy
software module. Any datagram sent out through that "device" appears
immediately as input. It can be used for testing. The loopback

address is also handy for sending queries to programs that are
designed to respond to network queries, but happen to be running on
the same computer. (Why bother to use your network to talk to a
program that is on the same machine yocu are?)

Finally, there are "defaul+-" routes, e.g.
default 128.6.4.27 uG pel

This route is used for datagrams that don‘t match any other entry. In
this case, they are sent to a gateway with address 128.6.4.27.

In most systems, datagrams are routed by looking up the destination
address in a table such as the one just described. If the address
12
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matches a specific host route, then that is used. Otherwise, 1if it
matches a network route, that is used. If no other route works, the
default 1s used. If there is no default, normally the user gets an
error message such as "network is unreachable".

The following sections will describe several ways of setting up these
routing tables. Generally, the actual operation of sending packets
doesn’t depend upon which method you use to set up the routes. When a
packet is to be sent, its destination is looked up in the table. The
different routing methods are simply more and less sophisticated ways
of setting up and maintaining the tables. ’

4.2 Fixed routes

The simplest way of doing routing is to have your configuration
contain commands to set up the routing table at startup, and then
leave it alomne. This method is practical for relatively small
networks, particularly if they don’t change very often.

Most computers automatically set up some routing entries for you.
Unix will add an entry for the networks to which you are directly
connected. For example, your startup file might contain the commands

ifconfig ie0 128.6.4.4 netmask 255.255.255.0
ifconfig iel 128.6.5.35 netmask 255.255.255.0

These specify that there are two network interfaces, and your
addresses on them. The system will automatically create routing table
entxries

128.6.4 128.6.4.4 U v iel
128.6.5 128.6.5.35 U iel

These specify that datagrams for the local subnets, 128.6.4 and
128.6.5, should be sent out the corresponding interface.

In addition to these, your startup files would contain commands to
define routes to whatever other networks you wanted to reach. For
example,

route add 128.6.2.0 128.6.4.1 1
route add 128.6.6.0 128.6.5.35 0

These commands specify that in order to reach network 128.6.2, a
gateway at address 128.6.4.1 should be used, and that network 128.6.6
is actually an additional network number for the physical network
connected to interface 128.6.5.35. Some other software might use
different commands for these cases. Unix differentiates them by the
"metric", which is the number at the end of the command. The metric
indicates how many gateways the datagram will have to go through to
get to the destination. Routes with metrics of 1 or greater specify
the address of the first gateway on the path. Routes with metrics of
13
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0 indicate that no gateway is involved -- this. is an additional

network number for the local network.

Finally, you might define a default route, to be used for destinations
not listed explicitly. This would normally show the address of a
gateway that has enough information to handle all possible
destinations.

If your network has only one gateway attached to it, then of course
all you need is a single entry pointing to it as a default. In that
case, you need not worry further about setting up routing on your
heosts. {(The gateway itself needs more attention, as we will see.)
The following sections are intended to provide help for setting up
networks where there are several different gateways.

4.3 Routing redirects

Most Internet experts recommend leaving routing decisions to the
gateways. That is, it is probably a bad idea to have large fixed
routinrg tables on each computer., The problem is that when something
on the network changes, you have to go around to many computers and
update the tables. If changes happen because a line goes down,
service may not be restored until someone has a chance to notice the
problem and change all the routing tables.

The simplest way to keep routes up to date is to depend upon a single
gateway to update your routing tables. This gateway should be set as
your default, (On Unix, this would mean a command such as "route add
default 128.6.4.27 1", where 128.6.4.27 1is the addreas of the
gateway.) As described above, your system will send all datagrams to
the default when it doesn’t have any better route. At first, this
strateqgy does not sound very good if you have more than one gateway.
After all, if all you have i3 a single default entry, how will you
ever use the other gateways in the cases where they are better? The
answer is that most gateways are able to send "“redirects"™ when they
get datagrams for which there is a better route. A redirect is a
specific kind of message using the ICMP (Internet Control Message

Protocel). It contains information that generally translates to "In
the future, to get to address XXXXX, please use gateway YYYYY instead
of me". Correct TCP/IP implementations use these redirects to add

entries to their routing table. Suppose your routing table starts out
as follows:

Destination Gateway Flags Interface
127.9.0.1 127.0.0.1 UH lo0
128.6.4 128.6.4.61 U pel
default 128.6.4.27 8[¢] pel
This contains an entry for the local network, 128.6.4, and a default -

pointing to the gateway 128.6.4.27. Suppose there is also a gateway
128.6.4.30, which is the best way to get to network 128.6.7. How do
14
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you find it? Suppose you have datagrams to send to 128.6.7.23. The
first datagram will go to the default gateway, since that’s the only
thing in the routing table. However the default gateway, 128.6.4.27,
will notice that 128.6.4.30 would really be a better route. (How it
does that is up to the gateway. However there are some fairly simple
methods £or a gateway to determine that you would be better off using
a different one.}) Thus 128.6.4.27 will send back a redirect
specifying that packets for 128.6.7.23 should be sent via 128.6.4.30.
Your 'TCP/IP software will add a routing entry

128.6.7.23 128.6.4.30 UDHG pel

Any future datagrams for 128.6.7.23 will be sent directly to the
appropriate gateway.

This strategy would be a complete solution, if it weren’t for three
problems:

- It requires each computer to have the address o¢f one gateway
"hardwired" into its startup files, aas the initial default,

- If a gateway goes down, routing table entries using it may not be
removed.

- If your network uses subnets, and your TCP/IP implementation does
not handle them, this strategy will not work.

How serious the first problem is depends upon your situation. For
small networks, there is no problem modifying startup files whenever
something changes. But some organizations can find it very painful.
If network topology changes, and a gateway is removed, any 3ystems
that have that gateway as their default must be adjusted. This is
particularly serious if the people who maintain the network are not
the same as those maintaining the individual systems. One simple

appeach is to make sure that the default address never changes. For
example, you might adopt the convention that address 1 on each subnet
is the default gateway for that subnet. For example, on subnet

128.6.7, the default gateway would always be 128.6.7.1. If that
gateway is ever removed, some other gateway is given that address.
(There must always be at least one gateway left to give it to. If
there isn’t, you are completely cut off anyway.)

The biggest problem with the description given so far is that it tells
you how to add routes but not how to get rid of them. What happens if
a gateway goes down? You want traffic to be redirected back to a
gateway that is up. Unfortunately, a gateway that has crashed is not
going to issue Redirects. One solution is to choose very reliable
gateways. If they crash very seldom, this may not be a problem. Note
that Redirects can be used to handle some kinds of network failure.
If a line goes down, your current route may no longer be a good.one..
As long as the gateway to which you are talking is still up and
talking to you, it can simply issue a Redirect to the gateway that is
now the best one. However you still need a way tc detect failure of
one of the gateways that you are talking to directly.
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The best approach for handling failed gateways is for your TCP/IP
implementation to detect routes that have failed. TCP maintzins
various timers that allow the software to detect when a connection has
broken. When this happens, one good appreach is to mark the route

down, and go back to the default gateway. A similar approach can also
be used to handle failures in the default gateway. If you have mark
two gateways as default, then the software should be capable of
switching when connections using one of them start failing.
Unfortunately, some common TCP/IP implementations do not mark routes
as down and change to new ones. (In particular Berkeley 4.2 Unix does
not.) However Berkeley 4.3 Unix does do this, and as other vendors
begin to base products on 4.3 rather than 4.2, this ability is
expected to be more common.

4.4 Other ways for hosts to find routes

As long as your TCP/IP implementations handle failiing connections
properly, establishing one or more default routes in the cenfiguration
file is likely to be the simplest way to handle routing. However
there are two other routing approaches that are worth considering for
special situations:

- spying on the routing protocol

- using proxy ARP

4.4,1 Spying on Routing

Gateways generally have a special protocol that they use among
themselves. Note that redirects cannot be used by gateways.
Redirects are simply ways for gateways to tell "dumb" hosts to use a
different gateway. The gateways themselves must have a complete
picture of the network, and a way to compute the optimal route to each
subnet. Generally they maintain this picture by exchanging
information among themselves. There are several different routing
protocols in use for this purpose. One way ‘for a computer to keep
track of gateways is for it to listen to the gateways’ messages.
There is software available for this purpose for most of the common
routing protocols. When you run this software, it maintains a
complete picture of the network, Jjust as the gateways do. The
software 1is generally designed to maintain your computer’s routing
. tables dynamically, so that datagrams are always gent to the proper
gateway. In effect, the routing software issues the equivalent of the
Unix "route add"” and “"route delete" commands as the network topology
changes. Generally this results in a complete routing table, rather
than one that depends upon default routes. (This assumes that the
gateways themselves maintain a complete table. Sometimes gateways
keep track of your campus network completely, but use a default route
for all off-campus networks, etc.)
16
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Running routing software on each host dees in some sense "solve" the
routing problem. However there are several reasons why this 4is not
normally recommended except as a last resort. The most serious
problem is that this reintroduces configuration options that must be
kept up to date on each host. Any computer that wants to participate
in the protocol among the gateways will need to cenfigure its software
compatibly with the gateways., Modern gateways often have
configuration options that are complex compared with those of an
individual host. It is undesirable to spread these to every host.

There 1is a somewhat more specialized problem that applies only to
diskless computers, By its very nature, a diskless computer depends
upon the network and file servers to load programs and to do swapping.
It is dangerous for diskless computers to run any software that
listens to network broadcasts. Routing software generally depends
upon broadcasts. For example, each gateway on the network might
broadcast its routing tables every 30 seconds. The problem with
disklesa nodes is that the software to listen to these broadcasta must
be loaded over the network. On a busy computer, programs that are not
used for a few seconds will be swapped or paged out. When they are
activated again, they must be swapped or paged in. Whenever a
broadcast is sent, every computer on the network needs to activate the
routing software in order to process the broadcast. This means that
many diskless computers will be doing swapping or paging at the same
time. This is likely to cause a temporary overload of the network.
Thus it is very unwise for diskless machines to run any software that
requires them to listen to broadcasts.

4.4.2 Proxy ARP

Proxy ARP is an alternative technique for letting gateways make all
the routing decisions. It is applicable to any broadcast network that
uses ARP or a similar technique for mapping Internet addresses into
network-specific addresses such as Ethernet addresses. This
presentation will assume Ethernet. Other network types can be
acccomodated if you replace "Ethernet address" with the appropriate
network-specific address, and ARP with the protocol used for address
mapping by that network type.

In many ways proxy ARP it is similar to wusing a default route and
redirects, however it uses a different mechanism to communicate routes
to the host. With redirects, a full routing table is used. At any
given moment, the -host knows what gateways it is routing datagrams to.
With proxy ARP, you dispense with explicit routing tables, and do
everything at the level of Ethernet addresses. Proxy ARP can be used
for all destinations, only for destinations within your network, or in
various combinations. It will be simplest to explain it as used for
all addresses. To do this, you instruct the host to pretend that
every computer in the world is attached directly to your local
Ethernet. On Unix, this would be done using a command

route add default 128.6.4.2 0
17
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where 128.6.4.2 is assumed to be the Internet address of your host.
As explained above, the metric of 0 causes everything that matches
this route to be sent directly on the local Ethernet.

When a datagram is to be sent to a local Ethernet destination, your
computer needs to know the Ethernet address of the destination. In
order to find that, it uses something generally called the ARP table.
This is simply a mapping from Internet address to Ethernet address.
Here’s a typical ARP table. (On our system, it is displayed using the
command "arp —-a".)

FOKKER.RUTGERS.EDU (128.6.5.16) at 8:0:20:0:8:22 temporary
CROSBY.RUTGERS.EDU (128.6.5.48) at 2:60:8¢c:49:50:63 temporary
CAIP.RUTGERS.EDU (12B.6.4.16) at 8:0:8b:0:1:6f temporary

DUDE .RUTGERS .EDU (128.6.20.16) at 2:7:1:0:eb:cd temporary
W20NS . .MIT.EDU (18.70.0.1lbv) at 2:7:1:0:eb:cd temporary
CBERON.USC.EDU (128.125.1.1) at 2:7:1:2:18:ee temporary
gatech.edu (128.61.1.1) at 2:7:1:0:eb:cd temporary

DARTAGNAN .RUTGERS.EDU (128.6.5.65) at 8:0:20:0:15:a9 temporary

Note chat it is simply a list of Internet addresses and the
correaponding Ethernet address. The "temporary" indicates that the
entry was added dynamically using ARP, rather than being put into the
table manually.

If there is an entry for the address in the ARP table, the datagram is
simply put on the Ethernet with the corresponding Ethernet address.
1f not, an "ARP request" is broadcast, asking for the destination host

to identify itself. This request is in effect a question "will the
host with Internet address 128.6.4.194 please tell me what your
Ethernet address is?". When a response comes back, it is added to the

ARP table, and future datagrams for that destination c¢an be sent
without delay.

This mechanism was originally designed only for use with hosts
attached directly to-a single Ethernet. If you need to talk to a host
on a different Ethernet, it was assumed that your routing table would

direct you to a gateway. The gateway would of course have one
interface on your Ethernmet. Your computer would then end up looking
up the address of that gatéway using ARP. It would generally be

useless to expect ARP to work directly with a computer on a distant
network, Since it ian’t on the same Ethernet, there’s n¢ Ethernet
address you can use to send datagrams to it. And when you send an ARP
request for it, thera’s nobody to answer the request.

Proxy ARP is based on the concept that the gateways will act as
proxies for distant hosts, Suppose you have a host on network
128.6.5, with address 128.6.5.2. (computer A in diagram below) It
wants to send a datagram to host 128.6.4.194, which is on a different
Ethernet (subnet 128.6.4). {computer C in diagram below) There is a
gateway connecting the two subnets, with address 128.6.5.1 [(gateway
R} !
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network 1 network 2
128.6.5 128.6.4

| I I

I I I
.6.5.1 128.6.4.194
6.4.1

i |
! I
128.6.5.2 128.6.5.3

* computer A  computer B gateway R computer C

Now suppeose computer A sends an ARP request for computer C. C isn't
able to answer for itself. It’s on a different network, and never
even sees the ARP request. However gateway R can act on its behalf.
In effect, your computer asks "will the host with Internet address
128.6.4.194 please tell me what your Ethernet address i1s?", and the
gateway says "here I am, 128.6.4.194 is 2:7:1:0:eb:cd", where
2:7:1:0:ebied is actually the Ethernet addreas of the gateway. This
bit of illusion works just £fine. Your host now thinks that
128.6.4.194 is attached to the local Ethernet with address
2:7:1:0:eb:cd. Of course it isn‘t. But it works anyway. Whenever
there’s a datagram to be sent to 128.6.4.194, your host sends it to
the specified Ethernet address. Since that’s the address of a gateway
R, the gateway gets the packet. It then forwards it. to the
destination.

Note that the net effect is exactly the same as having an entry in the
routing table saying to route destination 128,5.4.194 to gateway
128.6.5.1:

128.6.4.194 128.6.5.1 UGH pel

except that instead of having the routing done at the level of the
routing table, it is done at the level of the ARP table.

Generally it’s better to use the routing tabile. That’'s what it’s
there for. However here are some cases where proxy ARP makes sgense:

- when you have a host that dces not implement subnets
- when you have a host that does not respond properly to redirects
~ when you do not want to have to choose a specific default gateway
- when your software is unable to recover from a failed route
The technique was first designed to handle hosts that do ﬁot support
subnets. Suppose that you have a subnetted network. For example, you

have chosen to break network 128,6 into subnets, so that 128.6.4 and
128.6.5 are separate. Suppose you have a computer that dces not

understand .subnets. It will assume that all of 128.6 is a single
network. Thus it will be difficult to establish routing table entries
to handle the configuration above. You can‘t tell it about the

gateway explicitly using "route add 128.6.4.0 128.6.5.1 1" Since it
thinks all of 128.6 is a single network, it can’t understand that you
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are trying to tell it where to send one subnet. It will 1inste=2d
interpret this command as an attempt to set up a host route to a host
who address is 128.6.4.0. The only thing that would work would be to
establish explicit host routes for every individual host on every
other st ~et. You can’t depend upon default gateways and redirects in
this situation either. Suppose you said “"route add default 128.6.5.1
1", This would establish the gateway 128.6.5.1 as a default. However
the system wouldn’t use it to send packets to other subnets. Suppose
the host is 128.6.5.2, and wants to send a datagram to 128.6.4.194.
Since ' the destination is part of 128.6, your computer considers it to
be on the same network as itself, and doesn’t bother to loock for a
gateway.

Proxy ARP solves this problem by making the world look the way the
defective implementation expects it to look. Since the host thinks
all other subnets are part of its own network, it will simply issue
ARP requests for them., It expects to get back an Ethernet address
that can be used to establish direct communications. If the gateway
is practicing proxy ARP, it will respond with the gateway’s Ethernet
address. Trus datagrams are sent to the gateway, and everything
works.

As you can see, no specific configuration is need to use proxy ARP
with a host that doesn’t understand subnets. All you need is for your
gateways to implement proxy ARP. In order to use it for other
purposes, you must explicitly set up the routing table to cause ARP tO
be used. By default, TCP/IP implementations will expect to find a
gateway for any destination that is on a different network. In order
to make them issue ARP’s, you must explicitly install a route with
metric 0, as in the example "route add default 128.6.5.2 0". :

It is obvious that proxy BRP is reasonable in situations where you
have hosts that don‘t understand subnets. Some comments may be needed
on the other situations. Generally TCP/IP implementations do handle
ICMP redirects properly. Thus it is normally practical to set up a
default route to some gateway, and depend upon the gateway to issue
redirects for destinations that should use a different gateway.
However in case you ever run into an implementation that does not obey
redizects, or cannot be configured to have a default gateway, you may
be able to make things work by depending upon proxy ARP. Of course
this requires that you be able t¢ configure the host to issue ARP’'s
for all destinations. You will need to read the documentation
carefully to see exactly what routing features your implementation
has.

Sometimes vyou may choose to depend upon proxy ARP for convenience.
The problem with routing tables is that you have to configure them.
The simplest configquration is simply to establish a default route, but
even there you have to supply some equivalent to the Unix command
"route add default ...". Should you change the addresses of your
gateways, you have to modify this command on all of your hosts, so
that they point to the new default gateway. If you set up a default
route that depends upon proxy ARP (i.e. has metric 0), you won‘t have
to change your configuration files when gateways change. With proxy
ARP, no gateway addresses are given explicitly. Any gateway can
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respond to the ARP request, no matter what its address.

In order to save you from having to do configuration, some TCE/IP
implemer-ations default to using ARP when they have no other route.
The most flexible implementations allow you to mix strategies. That
ig, if you have specified a route for a particular network, or a
default route, they will use that route. But if there is no route for
a destination, they will treat it as local, and issue an ARP request.
As 1lbng as yourx gateways support proxy ARP, this allows such hosts to
reach any destination without any need for routing tables.

Finally, you may choose to use proxy ARP because it provides better
recovery from failure. This cheoice is very much dependent upon your
implementation. The next section will discuss the tradeoffs in more
detail.

In situations where there are several gateways attached to your
network, you may wonder how proxy ARP allows you to choose the best
one. a3 described above, your computer simply sends a broadcast
asking for the Ethernet address for a destination. We assumed that
the gateways would be set up to respond to this broadcast. If there
is more than one gateway, this requires coordination among them.
Ideally, the gateways will have a complete picture of the network
topology. Thus they are able to determine the best route from your
host to any destinaticn. If the gateway coordinate among themselves,
it should be possible for the best gateway to respond ¢tc your ARP
request. In practice, it may not always be possible for this to
happen. It is fairly easy to design algorithms to prevent very bad
routes. For example, consider the following situation:

1, 2, and 3 are networks. A and B are gateways, connecting network 2
to L or 3. If a host on network 2 wants to talk to a host on network
1, it 1is fairly easy for gateway A to decide to answer, and for
gateway B to decide not to. Here’s how: if gateway B accepted a
datagram for network 1, it would have to forward it to gateway A for
delivery. This would mean that it would take a packet from network 2
and send it right back out on network 2. It is very easy to test for
routes that involve this sort of circularity. It is much harder to
deal with a situation such as the following: i
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Suppose a computer on network 1 wants to send a datagram to one on
netvork 2. The route via A and D is probably better, because it goes
through only one intermediate network (3). It is also possible to go
via B, C, and E, but that path is probably slightly slower. Now
suppose the computer on network 1 sends an ARP request for a
destination on 2. Tt is likely that A and B will both respond to that

request. B is not quite as good a route as A. However it is not so
bad as the case above. B won’t have to send the datagram right back
out onto network 1. It is unable to determine there is a better

alternative route without doing a significant amount of global
analysis on the network. This may not be practical in the amount of
time available to process an ARP request.

4.4,3 Moving to New Routes After Failures

In principle, TCP/IP routing is capable of handling line failures and
gateway crashes. There are various mechanisms to adjust routing
tables and ARP tables to keep them up to date. Unfortunately, many
major implementations of TCP/IP have not implemented all of these
mechanisms. The net result is that you have to lock carefully at the
documentation £for your implementation, and consider what kinds of
failures are most likely. You then have to chooge a strategy that
will work best for your site. The basic choices for finding routes
have all been listed above: spying on the gateways’ routing protocol,
setting up a default route and depending upon redirects, and using
proxy ARP. These methods all have their own limitations in dealing
with a changing network.

Spying on the gateways’ routing protocol is theoretically the cleanest
solution. Assuming that the gateways use good routing technology, the
tables that they broadcast contain enough information to maintain
optimal routes to all destinations. Should something in the network
change (a 1line or a gateway goes down), this information will be
reflected in the tables, and the routing software will be able to
update the hosts’ routing tables appropriately. The disadvantages are
entirely practical. However in some situations the robustness of this
approach may outweight the disadvantages. To summarize the discussion
above, the disadvantages are:

- If the gateways are using sophisticated routing protocols,
configuration may be fairly complex. Thus you will be faced with
setting up and maintaining configuration files on every host.

- Some gateways use proprietary routing protocels. In this case,
you may not be able to find software for your hosts that
understands them.

- If your hosts are diskless, there can be very serious performance
problems associated with listening to routing broadcasts.

Some gateways may be able to convert from their internal routing
protocol to a simpler cne for use by your hosts. This could largely
22
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bypass the first two disadvantages. Currently there is no known way
to get around the third one. :

The problems with default routes/redirects and with proxy ARP are
similar: they both have trouble dealing with situations where their
table entries no longer apply. The only real difference is that
different tables are involved. Suppose a gateway goes down. If any
of your current routes are using that gateway, you may be in trouble.
If you are depending upon the routing table, the major meéchanism for
adjusting routes is the redirect. This works fine in two situations:

- where the default gateway is not the best route. The default
gateway can direct you to a better gateway

- where a distant line or gateway fails. If this changes the best
route, the current gateway can redirect you to the gateway that
iz now best

The case it does not protect you against is where the gateway that you
are currently sending your datagrams to crashes. Since it is down, it
is unable to redirect you to another gateway. In many cases, you are
also unprotected if your default gateway goes down, since there
routing starts by sending to the default gateway.

The situation with proxy ARP is similar. If the gateways coordinate
themselves properly, the right one will respond initially. If
something elsewhere in the network changes, the gateway you are
currently issuing can issue a -redirect to a new gateway that is
better. (It is usually possible to use redirects to override routes
established by proxy ARP.) Again, the case you are not protected
against is where the gateway you are currently using crashes. There
is no equivalent to failure of a default gateway, since any gateway
can respond te the ARP request.

So the big problem is that failure of a gateway you are using is hard
to recover from. It’s hard because the main mechanism for changing
routes is the redirect, and a gateway that is down can’t issue
redirects. Ideally, this problem should be handled by your TCP/IP
implementation, using timeouts. If a computer stops getting response,
it should cancel the existing route, and try to establish a new one.
Where you are using a default route, this means that the TCP/IP
implementation must be able to declare a route as down based on a
timeout. If you have been redirected to a non-default gateway, and
that route is declared down, traffic will return to the default. The
default gateway can then begin handling the traffic, or redirect it to
a different gateway. To handle failure of a default gateway, it
should be possible to have more than one default. If one is declared
down, another will be used. Together, these mechanisms should take
care of any failure.

Similar mechanisms can be used by systems that depend upon proxy ARP.

If a connection is timing out, the ARP table entry that it uses should

be cleared. This will cause a new ARP request, which can be handled

by a gateway that is still up. A gimpler mechanism would simply be to

time out all ARP entries after some period. Since mak;ng a new ARP
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request has a very low overhead, there’s no problem with removing an
ARP entry even if it is still good. The next time a datagram is to be
gent, & hew requeat will be made, The response is normally fast
enough that users will not even notice the delay.

Unfortunately, many common implementations do not use these
strategies. In Berkeley 4.2, there is no automatic way of getting rid
of any kind of entry, either routing or ARP. They do not invalidate
routes on timeout nor ARP entries. ARP entries last forever. If
gateway crashes are a significant problem, there may be no choice but
to run software that listens to the routing protocol. In Berkeley
4.3, routing entries are removed when TCP connections are failing.
ARP entries are still not removed. This makes the default route
strategy more attractive for 4.2 than proxy ARP. Having more than one
default route may also allow for recovery from failure of a default
gateway. Note however that 4.3 only handles timeout for connections
using TCP. If a route is being used only by services based on UDP, it
will not recover from gateway failure, While the ntraditional" TCP/IP
services use TCP, network file systems generally do not. Thus
4.3-pased systems still may not always be able to recover from
failure.

In general, you should examine your implementation in detail to
determine what sort of error recovery strategy it uses. We hope that
the discussion in this section will then help you choose the best way
of dealing with routing.

There is one more strategy that some older implementations use. It is
strongly discouraged, but we mention it here so you can recognize it
if you see it. Some implementations detect gateway failure by taking
active measure to see what gateways are up. The best version of this
is based on a list of all gateways that are currently in use. {This
can be determined £from the routing table.) Every minute or sSo, an
echo request datagram is sent to each such gateway. If a gateway
stops responding to echo requests, it is declared down, and all routes
using it revert to the default. With such an implementation, you
normally supply more than one default gateway. If the current default
stops responding, an alternate is chosen. 1In some cases, it is not
even necessary to choose an explicit default gateway. The software
will randomly choose any gateway that is responding. This
implementation is very flexible and recovers well from failures.
However a large network full of such implementations will waste a lot
of bandwidth on the echo datagrams that are used to test whether
gateways are up. This is the reason that this strategy is
discouraged.

5. Bridges and Gateways

This section will deal in more detail with the technology used to

construct larger networks. It will focus particularly on how to

connect together multiple Ethernets, token rings, etc. These days

most networks are hierarchical. Individual hosts attach to local-area
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networks such as Ethernet or token ring. Then those local networks
are connected via some combination of backbone networks and point to

point links. A university might have a network that looks in part
like «his:
t net 1 net 2 net 3 | net 4 net 5
[ ——— A——mmmm e Km—m—mm—— | ——e———— ——————
i I I I I
| Building A | | | i
Sttt K= b O X
i | campus backbone network :
[ I :
serial :
line :
_______ x_____
net o

Neta 1, 2 and 3 are in one building., Nets 4 and 5 are in different
buildings on the same campus. Net 6 is in a somewhat more distant
location. The diagram above shows nets 1, 2, and 3 being connected
directly, with switches that handle the connections being labelled as
"X" ., Building A 1s connected to the other buildings on the same
campus by a backbone network. Note that traffic from net 1 to net 5
takes the following path:

- from 1 to 2 via the direct connection between those networks
- from 2 to 3 via another direct connection
- from 3 to the backbone network

- across the backbone network from building A to the building in
which net 5 is housed ’

- from the backbone network to net 5

Traffic for net 6 would additiocnally pass over a serial line. With
the setup as shown, the same switch is being used to connect the
backbone network to net 5 and to the serial line. Thus traffic from
net 5 to net 6 would not need to go through the backbone, since there
is a direct connection from net 5 to the serial line.

This section is largely about what goes in those "X"'s.

5.1 Alternative Designs

Note that there are alternatives to the sort of design shown above.
One ia to use point to point lines or switched lines directly to each
hest ., Another is to use a single-level of network technology that is
capable of handling both local and long-haul networking.
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5.1.1 A m=sh of roint to point lines

Rather than connecting hosts to a local network such as Ethernet, and
then i-terconnecting the Ethernets, it is possible to connect
long-haul serial lines directly to the individual computers. If your
network consists primarily of individual computers at distant
locations, this might make sense. Here would be a small design of
that type.

computer 1 computer 2 computer 3
| I 1
| | I
I ! . I
computer 4 =——=———-——==—= computer 5 ———==—————T computer 6

In the design shown earlier, the task of routing datagrams around the
network is handled by special-purpose switching units shown as "X"’'s.
If you run lines directly between pairs of hosts, your hosts will be
doing this sort of routing and switching, as well as their normal
computing. Unless you run lines directly between every pair of
computers, some systems will end up handling traffic for others. For
example, in this design, traffic from 1l to 3 will go through 4, 5 and
6. This is certainly possible, since most TCP/IP implementations are
capable of forwarding datagrams. If your network is of this type, you
should think of your hosts as also acting as gateways. Much of the
discussion below on configuring gateways will apply to the routing
software that you run on your hosts. This sort of configuration is
not as common as it used to be, for two reasons:

- Most large networks have more than one computer per location. In
this case it is less expensive to set up a local network at each
location than to run point to point lines to each computer.

- Special-purpose switching units have become less expensive. It
often makes sense to offload the routing and communications tasks
to a switch rather than handling it on the hosts.

It is of course possible to have a netwourk that mixes the two kinds of
techology. In this case, locations with more equipment would be
handled by a hierarchical system, with local-area networks connected
by switches. Remote locations with a single computer would be handled
by point to point lines going directly to those computers. In this
case the routing software used on the remote computers would have to
be compatible with that used by the switches, or there would need to
be a gateway between the two parts of the network.

Design decisions of this type are typically made after an assessment
of the level of network traffic, the complexity of the network, the
quality of routing scftware available for the hosts, and the ability
of the hosts to handle extra network traffic.
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5.1.2 Circuit switching technology

Another alternative to the hierarchical LAN/backbone approcach is to
use circuit switches connected to each individual computer. This is
really a variant of the point to point line technique, where the
circuit switch allows each system to have what amounts to a direct
line to every other system. This technology is-not widely used within
the TCP/IP community, largely because the TCP/IP protocols assume that

the lowest level handles isolated datagrams. . When a ceontinuocus
connection is needed, higher network layers maintain it using
datagrams. This datagram-oriented technology does not match a

circuit-oriented environment very closely. 1In order to use circuit
switching technology, the IP software must be modified to be able to
build and tear down virtual circuits as appropriate. When there is a
datagram for a given destination, a wvirtual circuit must be opened to
it. The virtual circuit would be closed when there has been no
traffic to that destination for some time. The major use of this
technology is for the DDN (Defense Data Network). The primary
interface to the DDN is based on X.25. This network appears to the
outside as a distributed X.25 network. TCP/IP software intended for
use with the DDN must do precisely the virtual circuit management just
described. Similar techniques could be used with other
circuit-switching technologies, e.g. ATT‘s DataKit, althovgh there is
a}most no software currently available to support this. :

5.1.3 Single-level networks

r

In some cases new developments in wide-area networks can eliminate the
need for hierarchical networks. Early hierarchical networks were set
up because the only convenient network technology was Ethernet or
other LAN’s, and those could not span distances large enough to cover
an entire campus. Thus it was necessary to use serial lines to
connect LAN’s in wvarious locaticna. It is now possible to find
network technology whose characteristics are similar to Ethernet, but
where a single network can span a campus. Thus it is possible to
think of using a single large network, with no hierarchical structure.

The primary limitations of a large single-level network are
performance -and reliability considerations. If a, single network is
used for the entire campus, it 1is very easy to overload it.
Hierarchical networks can handle a larger traffic volume than
single-level networks if traffic patterns have a reasonable amount of

logality. That is, in many applications, traffic within an individual
department tends to be greater than traffic among departments.

Let’s look at a concrete example. Suppose there are 10 departments,

each of which generate 1 Mbit/sec of traffic. Suppose futher than 90%

of that traffic is to other systems within the department, and only

10% is to other departments. If each department haa its own network,

that network only needs to handle 1 Mbit/sec. The backbone network

connecting the department also only needs 1 Mbit/sec capacity, since
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it is handling 10% of 1 Mbit from each department.. In order to handle
this situation with a single wide-area network, that network would
have to be able to handle the simultaneous load from all 10
departments, which would be 10 Mbit/sec. .

The second limitation on single~level networks is reliability,
maintainability and security. Wide-area networks are more difficult
to diagnose and maintaia than local-area networks, because problems
can be. introduced from any building to which the network is connected.
They also make traffic visible in all locations. [For these reasons,
it is often sensible to handle local traffic locally, and use the
wide-area network only for traffie that actually must go between
buildings. However if you have a situation where each location has
only one or two computers, it may not make sense to set up a local
network at each location, and a single-level network may make sense.

5.1.4 Mixed designs

In practice, few large networks have the luxury of adopting a
theoretically pure design.

It is very unlikely that any large network will be able to avoid using
a hierarchical design. Suppose we set out to use a sSingle-level
network. Even if most buildings have only one or two computers, there
will be some location where there are enough that a local-area network
is justified. The result is a mixture of a single-level network and a
hierachical network. Most buildings have their computers connected
directly to the wide-area network, as with a single-level network.
However in one building there is a local-area network which wuses the
wide-area network as a backbone, connecting to it wvia a switching
unit.

On the other side of the story, even network designers with a strong
commitment to hierarchical networks are likely to find some parts of
the network where it simply doesn’t make economic sense to install a
local-area network. So a host is put directly onto the backbone
network, or tied directly to a serial line.

However you should think carefully before making ad hoc departures
from your design philosophy in order to save a few dollars. In the
long run, network maintainability is going to depend upon your ability
to make sense of what is going on in the network. The more consistent
your technology is, the more likely you are to be able to maintain the
network.
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5.2 An introducticn to alternative switching technologies

This section will discuss the characteristics of various technologies
used to switch datagrams between networks. In effect, we are trying
to £fill in some details about the black boxes assumed in previous
sections. There are three basic types of switches, generally referred
to as repeaters, bridges, and gateways, or alternatively as level 1, 2
and 2 switches (based on the level of the ISO model at which they
operate) . Note however that there are systems that combine features
of more than one of these, particularly bridges and gateways.

The most important dimensions on which switches vary are isolation,
performance, routing and network management facilities. These will be
discussed below.

The most serious difference i3 between repeaters and the other two
types of switch. Until recently, gateways provided very different
services from bridges. However these two technologies are now coming
closer together. Gateways are beginning to adopt the special-purpose
hardware that has characterized bridgeas in the past. Bridges are
beginning to adopt more sophisticated routing, isolation features, and
network management, which have characterized gateways in the past.
There are also systems that can function as both bridge and gateway.
This means that at the moment, the crucial decision may not bhe to
decide whether to use a bridge or a gateway, but te decide what
features you want in a switch and how it fits into your overall
network design.

5.2.1 Repeaters

A repeater is a piece of equipment that connects two networks that use
the same technology. It receives every data packet on each network,
and retransmits it onto the other network. The net result is that the
two networks have exactly the same set of packets on them. For
Ethernet or IEEE 802.3 networks there are actually two different kinds
of repeater. (Other network technologies may not need to make this
distinction.)

A simple repeater operates at a very low level indeed. Its primary
purpose is to get around limitations in cable length caused by signal
loss or timing dispersion. It allows you to construct somewhat larger
networks than you would ctherwise be able to construct. It can be
thought of as simply a two-way amplifier. It passes on individual
bits in the signal, without doing any processing at the packet level.
It even passes on collisions. That is, if a collision is generated on
one of the networks connected to 1it, the repeater generates a
collision on the other network. There is a limit to the number of
repeaters that you can use in a network. The basic Ethernet design
requires that signals must be able to get from one end of the network
to the other within a specified amount of time. This determineas a
maximum allowable length. Putting repeaters in the path does not get
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around this limit. (Indeed each repeater adds some delay, sO in some
ways a repeater makes things worse.) Thus the Ethernet configuration

rules limit the number of repeaters that can be in any path.

A "buffer:d repeater" operates at the level of whole data packets.
Rather than passing én signals a bit at a time, it receives an entire
packet from one network into an internal puffer and then retransmits
it onto the other network. It does not pass on collisions. Because
such lpw~level features as collisions are not repeated, the two
networks continue to be separate as far as the Ethernet specifications
are concerned. Thus there are no restrictions on the number of
buffered repeaters that can be used. Indeed there is no requirement
that both of the networks be of the same type. However the two
networks rmust be sufficiently similar that they have the same .packet
format. Generally this means that buffered repeaters can be used
between two networks of the IEEE 802.x family (assuming that they have
chosen the same address length), or two networks of some other related
family. A pair of buffered repeaters can be used to connect two
networks via a serial line.

Buffered repeaters share with simple repeaters the most basic feature:
they repeat every data packet that they receive from one network onto
the other. Thus the two networka end up with exactly the same set of
packets on them.

5.2.2 Bridges and gateways

A bridge differs from a buffered repeater primarily in the fact that
it exercizes some selectivity as to what packets it forwards between
networks. Generally the goal i3 to increase the capacity of the
system by keeping local traffic confined to the network on which it
originates. Only traffic intended for the other network (or some
other network accessed through it) goes through the bridge. So far
this description would also apply to a gateway. Bridges and gateways
differ in the way they determine what packets to forward. A bridge
uses only the ISO level 2 address. In the case of Ethernet or IEEE
802.% networks, this is the 6-byte Ethernet or MAC-level address. (The

term MAC-level address is more general. However for the sake of
concreteness, examples in this section will assume that Ethernet 1s
being used. You may generally replace the term "BEthernet address"

with the equivalent MAC-level address for other similar technologies.)
A bridge does not examine the packet itself, so it does not use the IP
address or its equivalent for routing decisions. In contrast, a
gateway bases .its decisions on the IP address, or its equivalent for
other protocols.

There are several reasons why it matters which kind of address is used

for decisions. The most basic is that it affects the relationship

between the switch and the upper layers of the protocecl. If

forwarding is done at the level of the MAC-level address (bridge), the

switch will be invisible to the protocols. If it is done at the IP

level, the switch will be visible. Let’s give an example. Here are
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two networks connected by a bridge:

network 1 network 2
128.6.5 128.6.4
[ | | I !
/ I | b I |
128.6.5.2 bridge 128.6.4.3 128.6.4.4
computer A computer B computer C

Note that the bridge does not have an IP address. As far as computers
A, B, and C are concerned, there 1is a single Ethernet (or other
network) to which they are all attached. This means that the routing
tables must be set up so that computers on both networks treat both
networks as local. When computer A opens a connection to computer B,
it first broadcasts an ARP request asking for computer B’s Ethernet
address. The bridge must pass this broadcast from network 1 to
network 2. (In general, bridges must pass all broadcasts.) Once the
two compulters know each otherx’s Ethernet addresses, communications use
the Ethernet address as the destination. At that point, the bridge
can start exerting some selectivity. It will only pass packets whose
Ethernet destination address is for a machine on the other network.
Thus a packet from B to A will be passed from network 2 to 1, but a
packet from B to C will be ignored.

In order to make this selection, the bridge needs to know which
network each machine is on. Most modern bridges build up a table for
each network, listing the Ethernet addresses of machines known to be
on that network. They do this by watching all of the packets on both
networks. When a packet first appears on network 1, it is reasonable
to conclude that the Ethernet source address corresponds to a machine
on network 1.

Note that a bridge must look at every packet on the Ethernet, for two
different reasons. First, it may use the source address to learn
which machines are on which network. Second, it must look at the
. destination address in order to decide whether it needs to forward the
packet to the other network.

As mentioned above, generally bridges must pass broadcasts from one
network to the other. Broadcasts are coften used to locate a resource.
The ARP request is a typical example of this. Since the bridge has no
way ¢f knowing what host is going to answer the broadcast, it must
pass it on to the other network. Some newer bridges have
user-selectable filters. With them, it is possible to block some
broadcasts and allow others. You might allow ARP broadcasts {(which
are essential for IP to function), but confine less essential
broadcasts to one network. For example, you might choose not to pass
rwhod broadcasts, which some systems use to keep track of every user
logged into every other system. You might decide that it is
sufficient for rwhod to know about the systems on a single segment of
the network.
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Now let’s take a look at two networks connected by-a gateway

network 1 network 2
128.6.5 128.6.14
I I ! I I
! I I I l
128.6.5.2 128.6.5.1 128.6.4.1 128.6.4.3 128.6.4.4
computer A gateway computer B computer C

Note that the gateway has IP addresses assigned to each interface.
The computers’ routing tables are set up to forward through
appropriate address. For example, computer A has a routing entry
saying that it should use the gateway 128.6.5.1 to get to subnet
128.6.4.

Becauze the computers know about the gateway, the gateway does not
need to scan all the packets on the Ethernet. The computers will send
packets to it when appropriate. For example, suppose computer A needs
to send a message to computer B. Its routing table will tell it to use
gateway 128.6.5.1. I+ will issue an ARP request for that address.
The gateway will respond to the ARP request, just as any host would.

>From then on, packets destinated for B will be sent with the gateway’s
Ethernet address.

5.2.3 More about bridges

There are several advantages to using the Mac-level address, as a
bridge does. First, every packet on an Ethernet or IEEE network has
such an address. The address is in the same place for every packet,
whether it is 1IP, DECnet, or some other protocol. Thus it is

relatively fast to get the address from the packet. A gateway must
decode the entire IP header, and if it is to support protocols other
than IP, it must have software for each such protocol. This means

that a bridge automatically supports every possible protecol, whereas
a gateway requires specific provisions for each protocol it is to
support.

However there are also disadvantages. The one that is intrinsic to
the design of a bridge is

- A bridge must locok at every packet on the network, not just those
addressed to 1it. Thus it is possible to overlocad a bridge by
putting it on a very busy network, even if very little traffic is
actually going through the bridge.

However there are another set of disadvantages that are based on the

way bridges are usually built. It is possible in principle to design

bridges that do not have these disadvantages, but I don’t know of any

plans to do so. They all stem from the fact that bridges do not have
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a complete routing table that describes the entire. system of networks.

They siaply have a list of the Ethernet addresses that lie on each of
its two networks. This means

- A bridge can handle only two network interfaces. At a central
.8ite, where many networks converge, this normally means that vyou
set up a backbone network toc which all the bridges connect, and
then buy a separate bridge to connect each other network to that
backbene. Gateways often have between 4 and 8 interfaces.

~ Networks that wuse bridges cannot have loops in them. If there

were a loop, some bridges would see traffic from the same

thernet address coming from both directions, and would be unable

to decide which table to putr that address in. Note that any

parallel paths to the same direction constitute a loop. This

‘means that multiple paths cannot be used for purposes of
splitting the lcad or providing redundancy.

There are some ways of getting arcund the problem of loops. Many
bridges allow configurations with redundant connections, but turn off
links until there are no loops left. Should a link fail, one of the
disabled ones is then brought back into service. Thus redundant links
can still buy you extra reliability. But they can’t be used to
provide extra capacity. It is also possible to build a bridge that
will make use of parallel point to point lines, in the one special
case where those lines go between a single pair of bridges. The
bridges would treat the two lines as a single virtuwal line, and use
them alternately in round-robin fashion.

The process of disabling redundant connections until there are no
locops left 1is called a "spanning tree algorithm". This name comes
from the fact that a tree is defined as a pattern of connections with
nc leops. Thus cone wants to disable connections until the connecticns
that are left form a tree that "spans" (includes) all of the networks
in the system. 1In order to do this, all of the bridges in a network
system must communicate among themselves. There is an IEEE proposal
to standardize the protocol for doing this, and for constructing the
spanning tree.

Note that there is a tendency for the resulting spanning tree to
result in high network 1loads on certain parts of the system. The
networks near the "top of the tree"” handle all traffic between distant
parts of the network., In a network that uses gateways, it would be
possible to put in an extra link between parts of the network that
have heavy traffic between them. However such extra links cannot be
used by a set of bridges.
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5.2.4 More about gateways

Gateways have their own advantages and disadvantages. In. general a
gateway Is more complex to design and to administer than a bridge. A
gateway must participate in all of the protocols that it is designed
to forward. For example, an IP gateway must respond to ARP requests.
The IP standards also require it to completely process the IP header,
decrementing the time to live field and obeying any IP options.

Gateways are designed to handle more complex network topologies than
bridges. As such, they have a different (and more complex) set of
decisions to make. In general a bridge has only a binary decision to
make: does it or does it not pass a given packet from one network to
the other? However a gateway may have several network interfaces.
Furthermore, when it forwards a packet, it must decide what host or
gateway to send the packet to next. It is even possible for a gateway
to decide to send a packet back onto the same network it came from.
If a host is using the gateway as its default, it may send packets
that really should go to scome other gateway. In that case, the
gateway will send the packet on to the right gateway, and send back an
ICMP redirect to the host. Many gateways can also handle parallel
paths. If there are several equally good paths to a destination, the
gateway will alternate among them in round-robin fashion.

In corder to handle these decisions, a gateway will typically have a
routing table that looks very much like a host’s. 2s with host
routing tables, a gateway’s table contains an entry for each possible
network number. For each network, there is either an entry saying
that that network is connected directly to the gateway, or there is an
entry saying that traffic for that network should be forwarded through
some other gateway or gateways. We will describe the "routing
protocols” used to build up this information later, in the discussion
on how to configure a gateway.

5.3 Comparing the switching technologies

Repeaters, buffered repeaters, bridges, and gateways form a spectrum.
Those devices near the beginning of the list are best for smaller
networks. They are less expensive, and easier to set up, Dbut less
general. Those near the end of the list are suitable for building
more complex networks. Many networks will contain a mixture of switch
types, with repeaters being used to connect a few nearby network
segments, bridges used for slightly larger areas {particularly those
with low traffic levels), and gateways used for long-distance links.

Note that this document so far has assumed that only gateways are

being used. The section on setting up a host described how to set up

a routing table listing the gateways to wuse to get to various

networks. Repeaters and bridges are invisible to IP. So as far as

previous sections are concerned, networks connected by them are to be

considered a single network. Section 3.3.1 describes how to configure
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a host in the case where several subnets are.carried on a single
physical network. The same configuration should be used when several
subnets are connected by repeaters or bridges.

As meniioned above, the most important dimensions on which switches
vary are isolation, performance, routing, network management, and
performing auxilliary support services.

5.3.1 Isclation

Generally people use switches to connect networks to each other. So
they are normally thinking of gaining c¢onnectivity, not providing
isclation. However isolation is worth thinking about. If yeu connect
two networks and provide no isolation at all, then any network
problema on other networks suddenly appear on yours as well. Also,
the two networks together may have enocugh traffic to overwhelm your
network., Thus it is well to think of choosing an appropriate level of
protection.

Isolation comes in two kinds: iseclaticn against malfunctions and
traffic isclation. In order to discuss isolation of malfunctions, we
have to have a taxonomy of malfunctions. Here are the major classes
of malfunctions, and which switches can isolate them:

- Electrical faults, e.g. a short in the cable or some sort of
fault that distorts the signal. All types of switch will confine
this to one side of the switch: repeater, buffered repeater,
bridge, gateway. These are worth protecting against, although
their frequency depends upon how often your cables are changed or
disturbed. It is rare for this sort of fault to occur without
some disturbance of the cable.

- Transceiver and controller problems that general signals that are
valid electrically but nevertheless incorrect (e.g. a continuocus,
infinitely long packet, spurious collisions, never dropping
carrier}). All except the simple repeater will confine this:
buffered repeater, bridge, gateway. (Such problems are not very
commor:. )

- Software malfunctions that lead to excessive traffic between
particular hosts (i.e, not broadcasts). Bridges and gateways
will isclate these. (This type of failure is fairly rare. Most
software and protocol problems generate broadcasts.)

- Software malfunctions that lead to excessive broadcast traffic.
Gateways will isclate these. Generally bridges will not, because
they must pass broadcasts. Bridges with user-settable filtering

can protect against some broadcast malfunctions. However in
general bridges must pass ARP, and most broadcast malfunctions
involve ARP. This problem is not severe on single-vendor

networks where software 1is under careful control, However
research sites generally see problems of this sort regularly.
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Traffic isolation is provided by bridges and gateways. The mos. basic
decision is how many computers can be put onto a network without
overloading its capacity. This requires knowledge of the capacity of
the network, but also how the hosts will use it. For example, an
Ethernet —ay support hundreds of systems if all the networx 1is used
for is remote logins and an occasional file transfer. Howesver if the
computers are diskless, and use the network for swapping, an Ethernet
will support between 10 and 40, depending upon their speeds and I/0
rates.

When you have to put more computers onto a network than it can handle,
you split it into several networks and put some Sort of switch between
them. If you do the split correctly, most of the traffic will be
between machines on the same piece. This means putting clients on the
aame network as their servers, putting terminal servers on the same
network as the hosts that they access most commonly, etc.

Bridges and gateways generally provide similar degrees of traffic
isolation. 1In both cases, only traffic bound for hosts on the other
side of the switch is passed. However see the discussion on routing.

5.3.2 Performance

This is becoming less of an issue as time goes c¢n, since the
technology is improving. Generally repeaters can handle the full
pandwidth of the network. (By their very nature, a simple repeater
must be able to do s=o.) Bridges and gateways often have performance
limitations of various sorts. Bridges have two numbers of interest:
packet scanning rate and throughput. As explained above, a bridge
must look at every packet on the network, even ones that it dces not
forward. The number of packets per second that it can scan in this
way is the packet scanning rate. Throughput applies to both bridges
and gateways. This is the rate at which they can forward traffic.
Generally this depends upon packet size. Normally the number of
packets per second that a unit can handle will ba greater for short
packets than long ones. Early models of bridge varied from a few
hundred packets per second to around 7000. The higher speeds are for
equipment that uses special-purpose hardware to speed up the process
of scanning packets. First-generation gateways varied from a few
hundred packets per second to 1000 or more. However second-generation
gateways are now available, using special-purpose hardware of the sane
sophistication as that used by bridges. They can handle on the order
of 10000 packets per second. Thus at the moment high-performance
bridges and gateways can switch most of the bandwidth of an Ethernet.
This means that performance should no longer be a basis for choosing
between types of switch. However within a given type of switch, there
are still specific models with higher or lower capacity.

Unfortunately there is no single number on which you <can base

performance estimates. The figure most commonly quoted is packets per

second. Be aware that most vendors count a packet only once as it

goes through a gateway, but that one prominent vendor counts packets
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twice. Thus their switching rates must be deflated by a factor of 2.
Also, when comparing numbers make sure that they are for packets of
the same size. A simple performance model is

processing time = switching time + packet size * time per byte

That i3, the time to switch a packet is normally a constant switching
time, representing interrupt latency, header processing, routing table
lookyp, etc., plus a component proportional to packet size,
representing the time needed to do any packet copying. One reasonable
approach to reporting performance is to give packets per second for
minimum and maximum size packets. Another is to report limiting
switching speed in packets per second and throughput in bytes per
second, i.e. the two terms of the equation above.

5.3.3 Routing

Routing refers to the technology used to decide where to send a packet
next. Of course for a repeater this is not an issue, since repeaters
forward every packet.

Bridges are almost always constructed with exactly two interfaces.
Thus routing turns into two decisions: (1) whether the bridge should
function at all, and (2) whether it should forward any particular
packet. The second decision is usually based on a table of MAC-level
addresses. As described above, this is built up by scanning traffic
on both sides of the bridge. The goal is to forward those packets
whose destination is on the other side of the bridge. This algorithm
requires that the network configuration have no loops or redundant
lines. Less sophisticated bridges leave this up to the system
designer. With these bridges, you must set up your network so that
there are no loops in it. More sophisticated bridges allow arbitrary
topolegy, but disable links until no loops remain. This provides
extra reliability. If a link fails, an alternative link will be
turned on automatically. Bridges that wo-k this way have protocol
that allows them to detect when a unit must be disabled or reenabled,
so that at any instant the set of active 1links forms a “spanning
trea", If you require the extra reliability of redundant links, make
sure that the bridges you use can disable and enable themselves in
this way. There is currently no official standard for the protocol
used among bridges, although there is a standard in the proposal
stage. If you buy bridges from more than one vendor, make sure that
their spanning-tree protocols will interoperate.

Gateways generally allow arbitrary network topologies, including loops
and redundant links. Because gateways may have more than two
interfaces, they must decide not only when to forward a packet, but
where to send it next. They do this by maintaining a model of the
entire network topology. Different routing techniques maintain models
of greater or lesser complexity, and use the data with varying degrees
of sophisticatien. Gateways that handle TCP/IP should generally
support the two Internet standard routing protocols: RIP (Routing
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Information Protocol) and EGP (External Gateway Protocol). EGP is a

special-purpose protocol for use in networks where there is a backbone
under a separate administration. It allows exchange of reachability
information with the backbone in a controlled way. If you are a
member of such a network, your gateway must support EGP. This is
becoming common enough that it is probably a good idea to make sure
that all gateways support EGP.

RIP is a protocol designed to handle routing within small to moderate
size networks, where line speeds do not differ radically. Its primary
limitations are:

- It cannct be used with networks where any path goes through more
than 15 gateways. This range may be further reduced if you use
an optional feature for giving a slow line a weight larger than
one.

- It cannot share traffic between parallel lines (although some
implementations allow this if the lines are between the same pair
of gateways) .

- It cannot adapt to changes in network load.

~ It is not well suited to situations where there are alternative
routes through lines of very different speeds.

- It may not be stable in networks where lines or gateways change a
lot.

Some vendors supply proprietary modifications to RIP that improve its
operation with EGP or increase the maximum path length beyond 15, but
do not otherwise modify it very much. If you expect your network to
involve gateways from more than one vendor, Yyou should generally
require that all of them support RIP, since this is the only routing
protocol that is generally available. If you expect to use a more
sophisticated protocel in addition, the gateways must have some
ability to translate between their own protocol and RIP. However for
very large or complex networks, there may be no choice but o use some
other protocol throughout.

More sophisticated routing protocols are possible. The primary ones
being considered today are cisco System’s IGRP, and protocols based on
the SPF (shortest-path first) algorithms. In general these protocols
are designed for larger or more complex networks. They are in general
stable under a wider variety of conditions, and they can handle
arbitrary combinations of line type and speed. Some of them allow you
to split traffic among parallel paths, to get better overall
throughput. Some newer technologies may allow the network to adjust
to take into account paths that are overloaded., However at the moment
I do not know of any commercial gateway that does this. (There are
very serious problems with maintaining stable routing when this 1is
done.) There are encugh variations among routing technology, and it is
changing rapidly enocugh, that you should discuss your proposed network
topology in detail with all of the vendors that you are considering.
Make sure that their technelogy can handle your topology, and can
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support any special requirements that you have: for sharing traffic
among parallel lines, and for adjusting topology to take into account
failures. In the long run, we expect one or more of these newer
routing protocols to attain the status of a standard, at least on a de
facto basis. However at the moment, there is no generally implemented
routing technology other than RIP,

One additional routing topic to consider is policy-based routing. In
general routing protocols are designed to f£ind the shortest or fastest
possible path for every packet. In some cases, this is not desired.
For reasons of security, cost accountability, etc., you may wish to

limit certain paths to certain uses. Most gateways now have some
ability to contreol the spread of routing information so as to give you
some administrative control over the way routes are used. Different

gateways vary in the degree of control that they support. Make sure
that you discuss any requirements that you have for contrel with all
prospective gateway vendors.

5.3.4 Network management

Network management covers a wide variety of topics. In general it
includes gathering statistical data and status information abcut parts
of your network, and taking action as necessary to deal with failures
and other changes. There are several things that a switch can do to
make this process easier. The most basic is that it should have a way
of gathering and reporting statistics. These should include various
sorts of packet counts, as well as counts of errors of various kinds.
This data is likely to be most detailed in a gateway, since the
gateway classifies packets using the protocols, and may even respond
to certain types of packet itself., However bridges and even buffered
repeaters can certainly have counts of packets forwarded, interface
errors, etc. It should be possible to collect this data from a
central monitoring point.

There is now an official Internet avproach to network monitoring. The
first stages use a related set of protocols, SGMP and SNMP. Both of
these protocols are designed to allow you to collect information and
to make changes in configuration parameters for gateways and other
entities on your network. You can run the matching interface programs
on any host in your network. SGMP is now available for several
commercial gateways, as well as for Unix systems that are acting as
gateways. There is a limited set of information which any SGMP
implementation is required to supply, as well as a uniform mechanism
for vendors to add information of their own. By late 1988, the second
generation of this protocol, SNMP, should be in service. This is a
slightly more sophisticated protocol. It has with it a more complete
set of information that can be monitored, called the MIB (Management
Information Base). Unlike the somewhat ad hoc collection of SGMP
variables, the MIB is the result of numerous committee deliberations
involving a number of vendors and users. Eventually it is expected
that there will be a TCP/IP equivalent of CMIS, the IS0 network
monitoring service. However CMIS, and its protocols, CMIP, are not
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yvet official 1ISC standards, so they are 4till in the experimental
atages.

in general terms all of these protocols accomplish the same thing:
They al >w you to collect criticial information in a uniform way from
all vendors’ equipment. You send commands as UDP datagrams from a
network management program running on some host in your network. ¥
Generally the interaction is fairly simple, with a single pair of
datagrams exchanged: a command and a response. At the moment security
is fairly simple. It is possible to require what amounts to a
password in the command. {In SGMP it is referred to as a "gession
name”, rather than a password.) More elaborate, encryption-based
security is being developed.

You will probably want to configure the network management tools at
your disposal to do several different things. For short-term network
monitoring, you will want to keep track of switches crashing or being
taken down for maintenance, and of failure of communications lines and
other hardware. It is possible to configurate SGMP and SNMP to issue
"traps"” (unsolited messages) to a specified host or list of hosts when
some of these critical events occur (e.g. lines up and down). However
it is unrealistic to expect a switch to notify you when it crashes.
It -s also possible for trap messages UO be lost due to network
failure or overload. Thus you should also poll your switches
reqularly to gather information. various displays are available,
including a map of your network where items change color as their
status changes, and running "strip charts" that show packet rates and
other items through selected switches. This software is still in its
early stages, SO you should expect to see a lot of change here.
However at the very least you should expect to be notified in some way
of failures. You may also want to be able to take actions to
reconfigure the system in response to failures, although security
issues make some mangers nervous about doing that through the existing
management protocols.

The second type of monitoring you are likely’ to want to do is to
collect information for use in periodic reports on network utilization
and performance. For this, you need to sample each switch
perodically, and retrieve numbers of interest. At Rutgers we sample
hourly, and get the number of packets forwarded for IP and DECnet, a
count of reloads, and various error counts. These are reported daily
in some detail. Monthly summaries are produced giving traffic through
each gateway, and a few key error rates chosen to indicate a gateway
that is being overloaded (packets dropped in input and output).

Tt should be possible to use monitoring techniques of this kind with
mosc types of switch. At the moment, simple repeaters do not report
any statistics. Since they do not generally have processors in them,
doing so would cause a majer increase in their cost. However it
should be possible to do network management for buffered repeaters,
bridges, and gateways. Gateways are the most likely to contain
sophisticated network management software. Most gateway vendors that
handle TCP/IP are expected to implement the monitoring protocols

described above. Many bridge vendors make some provisions for -
collecting performance data. Since bridges are not protocol-specific,
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most of them de not have the scoftware necessary - to- implement
TCP/IP~based network _management protocols. In some cases, monitoring

can be done only by typlng commands tg-~a’’ dlrectly—attached console. .

{We have seen onZ casé’ ahere lt 1s'necesaary to take.: the bridge out of

service to gather th;s data X In“ other cases,-lt is'possible to gather':

data wvia the network, put the" mon;torlng protocol :is ‘ad-hecror_even
proprietary.’ S T B T VR I i Lt AL LY
- . : SECER o S I S - -
Except for very small networks, yOu -shéild probablyrinsist. that:all of
the devices on your network colléct-statistics.'and provide:some:way of :
querying them remotely << In the"1Bhqg Funjy= "you. :can--expect-~the most.
software to be available for standard protocols such as SGMP/SNMP and
CMIS. However proprxetary monltorxng tools may be sufficient as long

as they work'WLth_all -0f the equlpment that you:have.-.:._ -.-__.

ran v

- | - kT
- e ‘.. -

E— - - 3
¥ PO S SR
- el

I .- T - N . B
S S 1 Iy b} $ VT = e

Here i3 a summary of “He places where each klnd of sthch technology
is normally used: o

- Repeaters are normally confinedito a single building. Since they

provide no traffic isolation, 'you must make sure that the entire

set of networks connected by repeaters can carry the traffic from

all of the 'computers 'oh ' 'it. Since’ they generally provide no

network monitoring tools, yoh 'will not want to use repeaters £or

a link that is llkely to fail. !

N

- Bridges and gateways should' be placed sufficiently frequently to
break your rietwork into pieces for which the traffic wvolume is

manageable. You may want to :place bridges or gateways in places
where traffic would ‘not require them. for network monitoring
reasons. ’ ’ - SR o

- Because' bridges must pass' broadcast packets, there is a limit to
the size network you can construct using them. It is probably a
good idea to limit the rietwork connected by bridges to a hundred
systems or so. This number can be increased somewhat for bridges
with good facilities for filtering. -

- Because certain kinds of network misbehavior will be passed,
bridges should be 'used'only amcng portiong of the network where a
single group is responsible for diagnosing problems. You have to
be crazy to use a bridge bétween networks owned by different
organlzatlons.‘ "Portions 'of your network where experiments are
being done in network technology should always be isolated £rom
the rest of the network by gateways.

- For many applications it is more important to choose a product
with the right combination ‘of ' performance, network management
tools, and ‘other' features than- to make the decision between

[

bridges and gateways. =~ T o+ of . .
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@zection{Configuring Gateways)

This section deals with configuration issues that are 3specific to
gateways. Gateways than handle TCP/IP are themselves Internet hosts.
Thus the .iscussions above on configuring addresses and routing
information apply to gateways as well as to heosts. The exact way you
configure a gateway will depend upon the vender. In some cases, you
edit files stored on a disk in the gateway itseif., However for
reliability reasons most gateways do not have disks of their own. For
them, configuration information is stored in non-volatile memory or in
configuration files that are uploaded from one or more hosts on the
network.

At a minimum, confiquration involves specifying the Internet address
and address mask for each interface, and enabling an appropriate
routing protaocol. However generally a few other options are
desirable. There are cften parameters in addition to the Internet
address that you should set for each interface.

One important -arameter is the broadcast address. As explained above,
older software may react badly when broadcasts are, sent using the new
standard broadcast address. For this reason, some vendors allow you
to choose a broadcast address to be used on each interface. It should
be set wusing your knowledge of what computers are on each of the
networks. In general if the computers follow current standards, a
broadcast address of 255.255.255.255 should be used. However older
implementations may behave better with other addresses, particularly
the address that uses zeros for the host number. ({For the network
128.6 this would be 128.6.0.0. For compatibility with software that
does not implement subnets, you would use 128.6.0.0 as the breoadcast
address even for a subnet such as 128.6.4.) You should watch your
network with a network monitor and see the results of several
different broadcast address choices. If you make a bad choice, every
timeé the gateway sends a routing update broadcast, many machines on
your network will respond with ARP‘s or ICMP errors. Note that when
you change the broadcast address in the gateway, you may need to
change it on the individual computers as well. Generally the idea is
to change the address on the systems that you can configure to give
behavior that is compatible with systems that you can‘t configure.

Other interface parameters may be necessary to deal with peculiarities
of the network it is connected to. For example, many gateways test
Ethernet interfaces to make sure that the cable is connected and the
transceiver is working correctly. Some of these tests will not work
properly with the older Ethernet version 1 transceivers. If you are
using such a transceiver, you would have to disable this keepalive
testing. Similarly, gateways connected by a serial line normally do
reqular testing to make sure that the line is still working. There
can be situations where this needs to be disabled.

Often you will have to enable features of the software that you want
to use. For example, it is often neceasary to turn on.the network

management protocol explicitly,” and to give it the name or address of"

a host that is running software to accept traps (error messages).
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Most gateways have options that relate to security. At a minimum,
this may include setting password for making changes remotely (and the
ngaession name" for SGMP). If you need to control access to certain
parts of your network, you will also need to define access control
lists or whatever other mechanism your gateway uses.

Gateways that load configuration information over the network present
special issues. When such a gateway boots, it sends broadcast
requests of various kinds, attempting to find its Internet address and
then'tc load configuration information. Thus it is necessary to make
sure that there is some computer that is prepared to respond to these
requests. In some cases, this is a dedicated micro running special
software. In other cases, generic software is available that can run
on a variety of machines. You should consult your vendor to make sure
that this can be arranged. For reliability reasons, you should make
sure that there is more than one host with the information and
programs that your gateways. need. In 3ome cases you will have to
maintain several different files. For example, the gateways used at
Rutgers use a program called "boctp" to supply their Internet address,
and they then load the code and configuration information using TFTE.-
This means that we have to maintain a file for bootp that contains
Ethernet and Internet addresses for each gateway, and a set of files
containing other configuration information for each gateway. If your
network is large, it is worth taking some trouble to make sure that
this informatlon remains consistent. We keep master copies of all of
the configuration information on a single computer, and distribute it
to other systems when it changes, using the Unix utilities make and
rdist. If your gateway has an option to store configuration
information in non-volatile memory, you will eliminate some of these
logistical headaches. However this presents its own problems. The
contents of non-volatile memory should be backed up in some central
location. Tt will also be harder for network management personnel to
review configuration information if it is distributed among the
gateways. R ' :
Starting a gateway 1is particularly challenging if it loads
configuration information from a distant portion of the network.
Gateways that expect to take "configuration information from the
network generally issue broadcast requests on all of the networks to
which they are connected. If there is a computer on one of those
networks that is prepared to respond to the request, things are
straightforward. However some gateways may be in remote locations
where there are no nearby computer systems that can support the
necessary protocols. In this case, it ‘is necessary to arrange for the
requests to be routed back to network where there are appropriate
computers. This requires what is strictly speaking a violation of the
basic . design philosophy for gateways. Generally a gateway should not
allow broadcasts from one network to pass through to an adjacent
network. In order to allow a gateway to get information from a
computer on a different network, at leaat one of the gateways in
between will have to be configured to pass the particular class of
broadeasts used to retrieve this information. If you have this sort
of configuration, you should test the loading process regularly. It
is not unusual to find that gateways do not come up after a power
failure because someone changed the configuration of another gateway
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and made it impossible to load some necessary information.

5.4 Configuring routing for gateways

The final topic to be considered is configuring routing. This is more
complex for a gateway than for a normal host. Most Internet experts
recormend that routing be left to the gateways. Thus hosts may simply
have a default route that points to the nearest gateway. Of course
the gateways themselves can’t get by with this. They need to have
complete routing tables.

In order to understand how to configure a gateway, we have to lock in
a bit more detail at how gateways communicate routes. when you first
turn on a gateway, the only networks it knows about are the cnes that
are directly connected to it. {(They are specified by the
configuration infermation.)} In order to find out how to get to more
distant parts of the network, it engages in some sort of "routing
protocol™. A routing protocel is simply a protocol that allows each
gateway to advertise which networks it can get to, and to spread that
information from one gateway to the next. Eventually every gateway
should know how to get to every network. There are different styles
of routing protoceol. In one common type, gateways talk only to nearby
gateways. In another type, every gateway builds up a database
describing every other gateway in the system. However all cof the
protocols have some way for each gateway in the system to find out how
to get to every destination.

A metric is some number or set of numbers that can be used to compare
routes. The routing table is constructed by gathering information
from other gateways. If two other gateways claim to be able to get to
the same destination, there must be some way of deciding which one to
use, The metric is used to make that decision. Metrics all indicate
in some general sense the "“cost" of a route. This may be a cost in
dollars of sending packets over that route, the delay in milliseconds,
or some other measure. The simplest metric is just a count of the
number of gateways along the path. This is referred to as a "hop
count". Generally this metric information ig set in the gateway
configuration files, or is derived from information appearing there.

At a minimum, routing configuration is likely to consist of a command
to enable the routing protoceol that you want to use. Most vendors
will have a prefered routing protocol. Unless you have some reason to
choose another, you should use that. The normal reason for choosing
ancther protocol 1is for compatibility with other kinds of gateway.
For example, your network may be connected to a national backbone
network that requires you to use EGP (exterior gateway protoceol} to
communicate routes with it. EGP is only appropriate for that specific
case. You. shounld not use EGP within your own network, but you may
need to use it in addition to your regular routing protocol to
communicate with a national network. If your own network has several
different types of gateway, then you may need to pick a routing
protocol that all of them support. At the moment, this is likely to
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be RIP (Routing Information Protocol)}. Depending upon the complexity
of your network, vyou could use RIP throughout it, or use a more
sophisticated protocol among the gateways that support it, and use RIP
only at the boundary between gateways from different vendors.

Assuming that you have chosen a routing protocel and turned it on,
there are some additional decisiona that you may need to.make. One of
the more basic configuration options has to do with supplying metric
information. As indicated above, metrics are numbers which are used
to decide which route is the best. Unsophisticated routing protocols,
e.g. RIP, normally just count hopa. So a route that passes through 2
gateways would be considered better than one that passes through 3.
Of course if the latter route used 1.S5Mbps lines and the former 9600
bps lines, this would be the wrong decision. Thus most routing
protocols allow you to set parameters to take this sort of thing into
account. With RIP, you would arrange o treat the 9600 bps line as if
it were several hops. You would increase the effective hop count
until the better route was chosen. More sophisticated preotocols may
take the bit rate of the line into account automatically. However you
should be on the lookout for configuration parameters that need to be

set. Generally these parameters will be associated with the
partlcular interface. For example, with RIP you would have to set a
metric value for the interface connected to the 9600 bps line. With

protoceols that are based on bit rate, you might need to specify the
speed of each 1line (if the gateway -cannot figure it out
automatically) .

Most routing protocols are designed to let each gateway learn the
topology of the entire network, and to choose the best possible route
for each packet. In some cases you may not want te use the "best™®
route. You may want traffic to stay out of a certain portion of the
network for security or cost reasons. One way to institute such
controls is by specifying routing- options. These options are likely
to be different for different vendors. But the basic strategy is that
if the rest of the network doesn’t know about a route, it won‘t be
used. So controls normally take the form of limiting the spread of
information about routes whose use you want to control.

Note that there are ways for the user to override the routing
decisions made by your gateways. If you really need to control access
to a certain network, you will have to do two separate things: Use
routing controls to make sure that the gateways use only the routes
you want them to. But also use access contral lists on the gateways
that are adjacent to the sensitive networks. These two mechanisms act
at different levels. The routing controls affect what happens to most
packets: those where the user has not specified routing manually.
Your routing mechanism must be set up to choose an acceptable route
for them, The access control list provides an additional limitation
which prevents users from supplying their own routing and bypassing
your controls.

For reliability and security reasons, there may also be controls to

allow you to liat the gateways from which you will accept information.

It may also be possible to rank gateways by priority. For example,

you might decide to listen to routes from within your own organization
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before routes from ‘other organizations or other parts of the

organization. This would have the effect 'of having traffic use . o
internal routes in preference to external ones, even if the externmal -
ones appear to be better. ’ ) ';

.If you use several different routing protocols, you will probably have

some decisiona to make regarding how much information to pass ameng
‘them. Since multiple routing protocols are often associated with

multiple organizations, you must be sure to make these decisions in

consultation with management of all of +the relevant networks.

Decisions that you make may have consequences for the other network

which are not immediately obvious. You might think it would be best

to configure the gateway so that everything it knows is passed on by

all routing protocols. However here are some reasons why you may not
want to do s80:

- The metrics used by different routing protocols may not be
comparable. If you are connected to two different external
networks, you want to specify that one should always be used in
preference to the other, or that the nearest one should be used,
rather than attempting to compare metric information received
from the two networks to see which has the better route.

- EGP is particularly sensitive, because the EGP protocol cannot
handle loops. Thus there are strict rules governing what
information may be communicated to a backbone that uses EGP. In
situations where EGP is being used, management of the backbone
network should help you configure your routing.

- If you have slow lines in your network (9600 bps or slower), you
may prefer not to send a complete routing table throughout the
network. If you are connected to an external network, you may
prefer to treat it as a default route, rather than to inject all
of its routing information into your routing protocol.
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